Plastic input and dynamics in industrial composting.

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-02-01 Epub Date: 2024-12-17 DOI:10.1016/j.wasman.2024.11.043
Stoyana Peneva, Quynh Nhu Phan Le, Davi R Munhoz, Olivia Wrigley, Giovana P F Macan, Heidi Doose, Wulf Amelung, Melanie Braun
{"title":"Plastic input and dynamics in industrial composting.","authors":"Stoyana Peneva, Quynh Nhu Phan Le, Davi R Munhoz, Olivia Wrigley, Giovana P F Macan, Heidi Doose, Wulf Amelung, Melanie Braun","doi":"10.1016/j.wasman.2024.11.043","DOIUrl":null,"url":null,"abstract":"<p><p>Green and biowaste, processed within large facilities into compost, is a key fertilizer for agricultural and horticultural soils. However, due to improper waste disposal of plastic, its residues often remain or even lead to the formation ofmicroplastics (1 µm - 5 mm, MiPs) in the final compost product. To better understand the processes, we first quantified 'macroplastics' (> 20 mm, MaPs) input via biowaste collection into an industrial composting plant, and, then determined MiP concentrations at five stages during the composting process (before and after shredding and screening processes), and in the water used for irrigation. The total concentrations of MaPs in the biowaste collected from four different German districts ranged from 0.36 to 1.95 kg ton<sup>-1</sup> biowaste, with polyethylene (PE) and polypropylene (PP) representing the most abundant types. The \"non-foil\" and \"foil\" plastics occurred in similar amounts (0.51 ± 0.1 kg ton<sup>-1</sup> biowaste), with an average load of 0.08 ± 0.01 items kg<sup>-1</sup> and 0.05 ± 0.01 items kg<sup>-1</sup>, respectively. Only 0.3 ± 0.1 kg MaP t<sup>-1</sup> biowaste was biodegradable plastic. Compost treatment by shredding tripled the total number of MaPs and MiPs to 33 items kg<sup>-1</sup>, indicating an enrichment of particles during the process and potential fragmentation. Noticeably, a substantial amount of small MiPs (up to 22,714 ± 2,975 particles L<sup>-1</sup>) were found in the rainwater used for compost moistening, being thus an additional, generally overlooked plastic source for compost. Our results highlight that reducing plastic input via biowaste is key for minimizing MiP contamination of compost.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"283-292"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.11.043","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Green and biowaste, processed within large facilities into compost, is a key fertilizer for agricultural and horticultural soils. However, due to improper waste disposal of plastic, its residues often remain or even lead to the formation ofmicroplastics (1 µm - 5 mm, MiPs) in the final compost product. To better understand the processes, we first quantified 'macroplastics' (> 20 mm, MaPs) input via biowaste collection into an industrial composting plant, and, then determined MiP concentrations at five stages during the composting process (before and after shredding and screening processes), and in the water used for irrigation. The total concentrations of MaPs in the biowaste collected from four different German districts ranged from 0.36 to 1.95 kg ton-1 biowaste, with polyethylene (PE) and polypropylene (PP) representing the most abundant types. The "non-foil" and "foil" plastics occurred in similar amounts (0.51 ± 0.1 kg ton-1 biowaste), with an average load of 0.08 ± 0.01 items kg-1 and 0.05 ± 0.01 items kg-1, respectively. Only 0.3 ± 0.1 kg MaP t-1 biowaste was biodegradable plastic. Compost treatment by shredding tripled the total number of MaPs and MiPs to 33 items kg-1, indicating an enrichment of particles during the process and potential fragmentation. Noticeably, a substantial amount of small MiPs (up to 22,714 ± 2,975 particles L-1) were found in the rainwater used for compost moistening, being thus an additional, generally overlooked plastic source for compost. Our results highlight that reducing plastic input via biowaste is key for minimizing MiP contamination of compost.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业堆肥中的塑料输入和动态。
绿色和生物废物在大型设施内加工成堆肥,是农业和园艺土壤的关键肥料。然而,由于塑料垃圾处理不当,其残留物往往会在最终的堆肥产品中残留甚至形成微塑料(1µm - 5 mm, MiPs)。为了更好地了解这一过程,我们首先量化了通过生物废物收集进入工业堆肥厂的“宏观塑料”(bbb20毫米,MaPs),然后确定了堆肥过程中五个阶段(粉碎和筛选过程前后)以及用于灌溉的水中的MiP浓度。从德国四个不同地区收集的生物垃圾中,MaPs的总浓度从0.36到1.95 kg - t -1不等,其中聚乙烯(PE)和聚丙烯(PP)的含量最高。“非箔”塑料和“箔”塑料出现的数量相似(0.51±0.1 kg-1生物垃圾),平均负荷分别为0.08±0.01项kg-1和0.05±0.01项kg-1。只有0.3±0.1 kg MaP t-1生物垃圾是可生物降解的塑料。粉碎堆肥处理使map和MiPs的总数增加了两倍,达到33个kg-1,表明在处理过程中颗粒富集和潜在的破碎。值得注意的是,在用于堆肥润湿的雨水中发现了大量的小颗粒MiPs(高达22,714±2,975颗粒L-1),因此是一个额外的,通常被忽视的堆肥塑料来源。我们的研究结果强调,通过生物废物减少塑料的投入是最大限度地减少MiP污染的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Combination mechanism and dimethyl ether removal performance of organic-bound water in kitchen waste. Evaluation of thermal parameters with geothermal energy recovery from a cold climate municipal solid waste landfill. Pollution analysis of micro/nano meters glass particles and benzene produced from the friction cleaning process for the recovery of waste glass. Efficient reduction of electric arc furnace dust by CO/H2 derived from waste biomass: Biomass gasification, zinc removal kinetics and mechanism. Isolation and characterization of cellulose from spent ground coffee (Coffea Arabica L.): A comparative study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1