Polar coordinate-based background removal algorithm for 2D x-ray scattering data.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-12-01 DOI:10.1063/5.0236066
Pu Guo, Xu Zheng, JiChao Jiang, ShuaiShuai Yin, Chenggong Zhang, Bin Yang, Yitao Cui, Tong Yang, Yueliang Gu, Xiaolong Li, Xingmin Zhang
{"title":"Polar coordinate-based background removal algorithm for 2D x-ray scattering data.","authors":"Pu Guo, Xu Zheng, JiChao Jiang, ShuaiShuai Yin, Chenggong Zhang, Bin Yang, Yitao Cui, Tong Yang, Yueliang Gu, Xiaolong Li, Xingmin Zhang","doi":"10.1063/5.0236066","DOIUrl":null,"url":null,"abstract":"<p><p>During the data collection of x-ray diffraction experiments with various detectors, background signals are often unavoidable along with the sample signal. Addressing the background during post-data analysis is not a straightforward task. In this work, we introduced an algorithm specifically designed to handle centrally symmetric two-dimensional x-ray diffraction data and processed the data using the Python programming language. The two-dimensional data are first transformed from Cartesian coordinates to polar coordinates. Second, utilizing existing background processing algorithms, one-dimensional background curves are identified for each azimuth angle. These background data are then merged to generate two-dimensional background data. Finally, by subtracting the background from the original data, we obtain the clear diffraction signal. The algorithm can effectively remove the background from x-ray diffraction data and exhibits the ability to handle backgrounds with high intensity and irregular shapes, and the discernibility of the weak signal is significantly enhanced. Moreover, researchers have the flexibility to choose whether to preserve or eliminate the signals from additional amorphous components based on their needs. This algorithm will provide researchers with the possibility for further data analysis.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0236066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

During the data collection of x-ray diffraction experiments with various detectors, background signals are often unavoidable along with the sample signal. Addressing the background during post-data analysis is not a straightforward task. In this work, we introduced an algorithm specifically designed to handle centrally symmetric two-dimensional x-ray diffraction data and processed the data using the Python programming language. The two-dimensional data are first transformed from Cartesian coordinates to polar coordinates. Second, utilizing existing background processing algorithms, one-dimensional background curves are identified for each azimuth angle. These background data are then merged to generate two-dimensional background data. Finally, by subtracting the background from the original data, we obtain the clear diffraction signal. The algorithm can effectively remove the background from x-ray diffraction data and exhibits the ability to handle backgrounds with high intensity and irregular shapes, and the discernibility of the weak signal is significantly enhanced. Moreover, researchers have the flexibility to choose whether to preserve or eliminate the signals from additional amorphous components based on their needs. This algorithm will provide researchers with the possibility for further data analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A simple graphics processing unit-accelerated propagation routine for laser pulses in the strong-field regime. Analyzing the effects of reflections on optical diagnostics in the main chamber and divertor of WEST (invited). Application of tunneling magnetoresistance in electromagnetic tomography system construction. Combined Raman spectroscopy and electrical transport measurements in ultra-high vacuum down to 3.7 K. Design of a novel high-speed tensile method for testing the high strain rate tensile behavior of aluminum alloys.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1