Investigation of a multi-frequency ultrasonic acoustic pressure source for acoustic agglomeration.

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS Ultrasonics Pub Date : 2024-12-12 DOI:10.1016/j.ultras.2024.107554
Andrius Čeponis, Darius Vainorius, Kristina Kilikevičienė, Artūras Kilikevičius
{"title":"Investigation of a multi-frequency ultrasonic acoustic pressure source for acoustic agglomeration.","authors":"Andrius Čeponis, Darius Vainorius, Kristina Kilikevičienė, Artūras Kilikevičius","doi":"10.1016/j.ultras.2024.107554","DOIUrl":null,"url":null,"abstract":"<p><p>This paper represents numerical and experimental investigations of an ultrasonic multifrequency piezoelectric acoustic pressure source whose target application is acoustic agglomeration of fine and ultrafine particles. The operation of source is based on three vibration modes at 25.83 kHz, 34.73 kHz and 52.41 kHz. Multi-frequency operation allows to obtain three different patterns of acoustic pressure levels which allows to increase performance of the agglomeration process while particles sizes change over time or process. Moreover, acoustic pressure levels, as well as their patterns, were investigated while the source was driven by rectangular and sawtooth signals. Excitation by nonharmonic signals ensured possibility of obtaining modified patterns which results changes in the acoustic pressure levels gradients and allows to obtain different amplitudes of particles vibrations in the agglomeration chamber. Results of numerical and experimental investigations have shown that the ultrasonic acoustic pressure source under excitation by square and sawtooth signals is able to provide maximum sound pressure in the range from 121.6 dB to 132.2 dB while maximum SPL values generated by harmonic signal were indicated in range from 116.4 dB to 129.3 dB. Finally, experimental investigations of acoustic fields impacting particle decrement in air flow have shown that generation of acoustic field by square and sawtooth-shaped signals is able to provide up to 21.38 % and 27.88 % decrement level of 0.3 µm and 1 µm sized particles.</p>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"148 ","pages":"107554"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.ultras.2024.107554","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper represents numerical and experimental investigations of an ultrasonic multifrequency piezoelectric acoustic pressure source whose target application is acoustic agglomeration of fine and ultrafine particles. The operation of source is based on three vibration modes at 25.83 kHz, 34.73 kHz and 52.41 kHz. Multi-frequency operation allows to obtain three different patterns of acoustic pressure levels which allows to increase performance of the agglomeration process while particles sizes change over time or process. Moreover, acoustic pressure levels, as well as their patterns, were investigated while the source was driven by rectangular and sawtooth signals. Excitation by nonharmonic signals ensured possibility of obtaining modified patterns which results changes in the acoustic pressure levels gradients and allows to obtain different amplitudes of particles vibrations in the agglomeration chamber. Results of numerical and experimental investigations have shown that the ultrasonic acoustic pressure source under excitation by square and sawtooth signals is able to provide maximum sound pressure in the range from 121.6 dB to 132.2 dB while maximum SPL values generated by harmonic signal were indicated in range from 116.4 dB to 129.3 dB. Finally, experimental investigations of acoustic fields impacting particle decrement in air flow have shown that generation of acoustic field by square and sawtooth-shaped signals is able to provide up to 21.38 % and 27.88 % decrement level of 0.3 µm and 1 µm sized particles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
期刊最新文献
Ultrasound imaging with flexible transducers based on real-time and high-accuracy shape estimation. Investigation of rare earth giant magnetostrictive transducers based on improved LTspice circuit model. Investigation of a multi-frequency ultrasonic acoustic pressure source for acoustic agglomeration. Interaction effects on acoustic emissions of submicron ultrasound contrast agents at subharmonic resonances. Mitigating high frame rate demands in shear wave elastography using radial basis function-based reconstruction: An experimental phantom study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1