The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats.

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Tissue engineering and regenerative medicine Pub Date : 2025-01-01 Epub Date: 2024-12-18 DOI:10.1007/s13770-024-00686-6
Yoon-Jo Lee, Ji-Hyeon Oh, Suyeon Park, Jongho Choi, Min-Ho Hong, HaeYong Kweon, Weon-Sik Chae, Xiangguo Che, Je-Yong Choi, Seong-Gon Kim
{"title":"The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats.","authors":"Yoon-Jo Lee, Ji-Hyeon Oh, Suyeon Park, Jongho Choi, Min-Ho Hong, HaeYong Kweon, Weon-Sik Chae, Xiangguo Che, Je-Yong Choi, Seong-Gon Kim","doi":"10.1007/s13770-024-00686-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.</p><p><strong>Methods: </strong>This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.</p><p><strong>Results: </strong>The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group. Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.</p><p><strong>Conclusion: </strong>These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"91-104"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711554/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00686-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.

Methods: This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.

Results: The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group. Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.

Conclusion: These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
l -丝氨酸明胶海绵在去卵巢大鼠颅骨缺损中的应用。
背景:骨质疏松症的特点是由于成骨细胞和破骨细胞活性之间的不平衡导致骨密度下降,这对骨愈合提出了重大挑战,特别是对绝经后妇女。目前的治疗方法,如双膦酸盐,是有效的,但与药物相关的颌骨骨坏死等副作用有关,需要更安全的替代品。方法:研究l -丝氨酸明胶海绵在去卵巢骨质疏松大鼠颅骨缺损骨再生中的应用。将30只大鼠分为三组:对照组、含有氨基酸混合物的明胶海绵组和含有l -丝氨酸的明胶海绵组。采用显微计算机断层扫描(micro-CT)和组织学分析评估骨再生。结果:与对照组和氨基酸组相比,l -丝氨酸组骨体积(BV)和骨面积显著增加。l -丝氨酸组骨体积与总积比(BV/TV)也显著升高。免疫组织化学分析表明,l -丝氨酸处理抑制了破骨细胞活性标志物组织蛋白酶K的表达,同时增加了丝氨酸消旋酶的活性。结论:l -丝氨酸明胶海绵不仅能促进骨形成,还能抑制破骨细胞介导的骨吸收,为目前治疗骨质疏松相关骨缺损提供了一种有前景且更安全的替代方法。需要进一步研究其在人类患者中的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
TRAP staining kit
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
期刊最新文献
Efficacy of Human-Induced Pluripotent Stem Cell-Derived Neural Progenitor Cell Replacement Therapy in a Vascular Dementia Animal Model. Antioxidant Peptide-Based Nanocarriers for Delivering Wound Healing Agents. Innovations in Vascular Repair from Mechanical Intervention to Regenerative Therapies. Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues. Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1