Establishment of minigenomes for infectious bursal disease virus.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES Veterinary Research Pub Date : 2024-12-18 DOI:10.1186/s13567-024-01423-6
Hui Yang, Mingrui Zhang, Sanying Wang, Daxin Peng, Luis Martinez-Sobrido, Chengjin Ye
{"title":"Establishment of minigenomes for infectious bursal disease virus.","authors":"Hui Yang, Mingrui Zhang, Sanying Wang, Daxin Peng, Luis Martinez-Sobrido, Chengjin Ye","doi":"10.1186/s13567-024-01423-6","DOIUrl":null,"url":null,"abstract":"<p><p>Minigenomes (MGs) have greatly advanced research on the viral life cycle, including viral replication and transcription, virus‒host interactions, and the discovery of antivirals against RNA viruses. However, an MG for infectious bursal disease virus (IBDV) has not been well established. Here, we describe the development of IBDV MG, in which the entire coding sequences of viral genomic segments A and B are replaced with Renilla luciferase (Rluc) or enhanced green fluorescent protein (EGFP) reporter genes. Under the control of the RNA polymerase I promoter, the translation of IBDV MG is controlled by the viral proteins VP1 and VP3. Interestingly, IBDV B MG shows greater activity than does IBDV A MG. Moreover, the sense IBDV B MG was expressed at a higher level than the antisense IBDV B MG. In agreement with our previous findings, the translation of IBDV B MG controlled by VP1 and VP3 is independent of the cellular translation machinery components eukaryotic initiation factor (eIF)4E and eIF4G, but intact VP1 polymerase activity, VP3 dsRNA-binding activity, and the interaction between VP1 and VP3 are indispensable for both sense and antisense IBDV B MG activity. In addition, ribavirin, which inhibits IBDV replication, inhibits IBDV B MG activity in a dose-dependent manner. Collectively, the IBDV MG established in this study provides a powerful tool to investigate IBDV intracellular replication and transcription and virus‒host interactions and facilitates high-throughput screening for the identification of IBDV antivirals.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"162"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01423-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Minigenomes (MGs) have greatly advanced research on the viral life cycle, including viral replication and transcription, virus‒host interactions, and the discovery of antivirals against RNA viruses. However, an MG for infectious bursal disease virus (IBDV) has not been well established. Here, we describe the development of IBDV MG, in which the entire coding sequences of viral genomic segments A and B are replaced with Renilla luciferase (Rluc) or enhanced green fluorescent protein (EGFP) reporter genes. Under the control of the RNA polymerase I promoter, the translation of IBDV MG is controlled by the viral proteins VP1 and VP3. Interestingly, IBDV B MG shows greater activity than does IBDV A MG. Moreover, the sense IBDV B MG was expressed at a higher level than the antisense IBDV B MG. In agreement with our previous findings, the translation of IBDV B MG controlled by VP1 and VP3 is independent of the cellular translation machinery components eukaryotic initiation factor (eIF)4E and eIF4G, but intact VP1 polymerase activity, VP3 dsRNA-binding activity, and the interaction between VP1 and VP3 are indispensable for both sense and antisense IBDV B MG activity. In addition, ribavirin, which inhibits IBDV replication, inhibits IBDV B MG activity in a dose-dependent manner. Collectively, the IBDV MG established in this study provides a powerful tool to investigate IBDV intracellular replication and transcription and virus‒host interactions and facilitates high-throughput screening for the identification of IBDV antivirals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
期刊最新文献
African swine fever virus enhances viral replication by increasing intracellular reduced glutathione levels, which suppresses stress granule formation. A spatially-heterogeneous impact of fencing on the African swine fever wavefront in the Korean wild boar population. Development of a reporter feline herpesvirus-1 for antiviral screening assays. Developmental patterns of intestinal group 3 innate lymphoid cells in piglets and their response to enterotoxigenic Escherichia coli infection. Establishment of minigenomes for infectious bursal disease virus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1