Nutritional niches of potentially endemic, facultatively anaerobic heterotrophs from an isolated Antarctic terrestrial hydrothermal refugium elucidated through metagenomics.

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Environmental Microbiome Pub Date : 2024-12-18 DOI:10.1186/s40793-024-00655-5
Craig W Herbold, Stephen E Noell, Charles K Lee, Chelsea J Vickers, Matthew B Stott, Jonathan A Eisen, Ian R McDonald, S Craig Cary
{"title":"Nutritional niches of potentially endemic, facultatively anaerobic heterotrophs from an isolated Antarctic terrestrial hydrothermal refugium elucidated through metagenomics.","authors":"Craig W Herbold, Stephen E Noell, Charles K Lee, Chelsea J Vickers, Matthew B Stott, Jonathan A Eisen, Ian R McDonald, S Craig Cary","doi":"10.1186/s40793-024-00655-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tramway Ridge, a geothermal Antarctic Specially Protected Area (elevation 3340 m) located near the summit of Mount Erebus, is home to a unique community composed of cosmopolitan surface-associated micro-organisms and abundant, poorly understood subsurface-associated microorganisms. Here, we use shotgun metagenomics to compare the functional capabilities of this community to those found elsewhere on Earth and to infer in situ diversity and metabolic capabilities of abundant subsurface taxa.</p><p><strong>Results: </strong>We found that the functional potential in this community is most similar to that found in terrestrial hydrothermal environments (hot springs, sediments) and that the two dominant organisms in the subsurface carry high rates of in situ diversity which was taken as evidence of potential endemicity. They were found to be facultative anaerobic heterotrophs that likely share a pool of nitrogenous organic compounds while specializing in different carbon compounds.</p><p><strong>Conclusions: </strong>Metagenomic insights have provided a detailed understanding of the microbe-based ecosystem found in geothermally heated fumaroles at Tramway Ridge. This approach enabled us to compare Tramway Ridge with other microbial systems, identify potentially endemic taxa and elucidate the key metabolic pathways that may enable specific organisms to dominate the ecosystem.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"104"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00655-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tramway Ridge, a geothermal Antarctic Specially Protected Area (elevation 3340 m) located near the summit of Mount Erebus, is home to a unique community composed of cosmopolitan surface-associated micro-organisms and abundant, poorly understood subsurface-associated microorganisms. Here, we use shotgun metagenomics to compare the functional capabilities of this community to those found elsewhere on Earth and to infer in situ diversity and metabolic capabilities of abundant subsurface taxa.

Results: We found that the functional potential in this community is most similar to that found in terrestrial hydrothermal environments (hot springs, sediments) and that the two dominant organisms in the subsurface carry high rates of in situ diversity which was taken as evidence of potential endemicity. They were found to be facultative anaerobic heterotrophs that likely share a pool of nitrogenous organic compounds while specializing in different carbon compounds.

Conclusions: Metagenomic insights have provided a detailed understanding of the microbe-based ecosystem found in geothermally heated fumaroles at Tramway Ridge. This approach enabled us to compare Tramway Ridge with other microbial systems, identify potentially endemic taxa and elucidate the key metabolic pathways that may enable specific organisms to dominate the ecosystem.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过宏基因组学研究了孤立的南极陆地热液避难地潜在地方性兼性厌氧异养生物的营养生态位。
背景:Tramway Ridge是一个地热南极特别保护区(海拔3340米),位于埃里伯斯山山顶附近,是一个独特的群落的家园,由世界各地的地表相关微生物和丰富的,知之甚少的地下相关微生物组成。在这里,我们使用散弹枪宏基因组学来比较该群落与地球上其他地方发现的群落的功能能力,并推断丰富的地下分类群的原位多样性和代谢能力。结果:该群落的功能潜力与陆地热液环境(温泉、沉积物)最相似,地下两种优势生物具有较高的原位多样性,可作为潜在地方性的证据。它们被发现是兼性厌氧异养生物,可能共享一个含氮有机化合物池,同时专门研究不同的碳化合物。结论:宏基因组学的见解为Tramway Ridge地热喷气孔中发现的微生物生态系统提供了详细的了解。这种方法使我们能够将Tramway Ridge与其他微生物系统进行比较,确定潜在的特有分类群,并阐明可能使特定生物主导生态系统的关键代谢途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
期刊最新文献
A systematic scoping review reveals that geographic and taxonomic patterns influence the scientific and societal interest in urban soil microbial diversity. Plant-microbe interactions influence plant performance via boosting beneficial root-endophytic bacteria. Insights into quinoa endophytes: core bacterial communities reveal high stability to water stress and genotypic variation. Commercial bioinoculants improve colonization but do not alter the arbuscular mycorrhizal fungal community of greenhouse-grown grapevine roots. Peptide nucleic acid (PNA) clamps reduce amplification of host chloroplast and mitochondria rRNA gene sequences and increase detected diversity in 16S rRNA gene profiling analysis of oak-associated microbiota.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1