Validation of prognostic models predicting mortality or ICU admission in patients with COVID-19 in low- and middle-income countries: a global individual participant data meta-analysis.

Johanna A A Damen, Banafsheh Arshi, Maarten van Smeden, Silvia Bertagnolio, Janet V Diaz, Ronaldo Silva, Soe Soe Thwin, Laure Wynants, Karel G M Moons
{"title":"Validation of prognostic models predicting mortality or ICU admission in patients with COVID-19 in low- and middle-income countries: a global individual participant data meta-analysis.","authors":"Johanna A A Damen, Banafsheh Arshi, Maarten van Smeden, Silvia Bertagnolio, Janet V Diaz, Ronaldo Silva, Soe Soe Thwin, Laure Wynants, Karel G M Moons","doi":"10.1186/s41512-024-00181-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We evaluated the performance of prognostic models for predicting mortality or ICU admission in hospitalized patients with COVID-19 in the World Health Organization (WHO) Global Clinical Platform, a repository of individual-level clinical data of patients hospitalized with COVID-19, including in low- and middle-income countries (LMICs).</p><p><strong>Methods: </strong>We identified eligible multivariable prognostic models for predicting overall mortality and ICU admission during hospital stay in patients with confirmed or suspected COVID-19 from a living review of COVID-19 prediction models. These models were evaluated using data contributed to the WHO Global Clinical Platform for COVID-19 from nine LMICs (Burkina Faso, Cameroon, Democratic Republic of Congo, Guinea, India, Niger, Nigeria, Zambia, and Zimbabwe). Model performance was assessed in terms of discrimination and calibration.</p><p><strong>Results: </strong>Out of 144 eligible models, 140 were excluded due to a high risk of bias, predictors unavailable in LIMCs, or insufficient model description. Among 11,338 participants, the remaining models showed good discrimination for predicting in-hospital mortality (3 models), with areas under the curve (AUCs) ranging between 0.76 (95% CI 0.71-0.81) and 0.84 (95% CI 0.77-0.89). An AUC of 0.74 (95% CI 0.70-0.78) was found for predicting ICU admission risk (one model). All models showed signs of miscalibration and overfitting, with extensive heterogeneity between countries.</p><p><strong>Conclusions: </strong>Among the available COVID-19 prognostic models, only a few could be validated on data collected from LMICs, mainly due to limited predictor availability. Despite their discriminative ability, selected models for mortality prediction or ICU admission showed varying and suboptimal calibration.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"8 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-024-00181-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We evaluated the performance of prognostic models for predicting mortality or ICU admission in hospitalized patients with COVID-19 in the World Health Organization (WHO) Global Clinical Platform, a repository of individual-level clinical data of patients hospitalized with COVID-19, including in low- and middle-income countries (LMICs).

Methods: We identified eligible multivariable prognostic models for predicting overall mortality and ICU admission during hospital stay in patients with confirmed or suspected COVID-19 from a living review of COVID-19 prediction models. These models were evaluated using data contributed to the WHO Global Clinical Platform for COVID-19 from nine LMICs (Burkina Faso, Cameroon, Democratic Republic of Congo, Guinea, India, Niger, Nigeria, Zambia, and Zimbabwe). Model performance was assessed in terms of discrimination and calibration.

Results: Out of 144 eligible models, 140 were excluded due to a high risk of bias, predictors unavailable in LIMCs, or insufficient model description. Among 11,338 participants, the remaining models showed good discrimination for predicting in-hospital mortality (3 models), with areas under the curve (AUCs) ranging between 0.76 (95% CI 0.71-0.81) and 0.84 (95% CI 0.77-0.89). An AUC of 0.74 (95% CI 0.70-0.78) was found for predicting ICU admission risk (one model). All models showed signs of miscalibration and overfitting, with extensive heterogeneity between countries.

Conclusions: Among the available COVID-19 prognostic models, only a few could be validated on data collected from LMICs, mainly due to limited predictor availability. Despite their discriminative ability, selected models for mortality prediction or ICU admission showed varying and suboptimal calibration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Risk prediction tools for pressure injury occurrence: an umbrella review of systematic reviews reporting model development and validation methods. Rehabilitation outcomes after comprehensive post-acute inpatient rehabilitation following moderate to severe acquired brain injury-study protocol for an overall prognosis study based on routinely collected health data. Validation of prognostic models predicting mortality or ICU admission in patients with COVID-19 in low- and middle-income countries: a global individual participant data meta-analysis. Reported prevalence and comparison of diagnostic approaches for Candida africana: a systematic review with meta-analysis. The relative data hungriness of unpenalized and penalized logistic regression and ensemble-based machine learning methods: the case of calibration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1