Usnic acid brief exposure suppresses cariogenic properties and complexity of Streptococcus mutans biofilms.

IF 5.9 Q1 MICROBIOLOGY Biofilm Pub Date : 2024-11-30 eCollection Date: 2024-12-01 DOI:10.1016/j.bioflm.2024.100241
Santosh Pandit, Mi-A Kim, Ji-Eun Jung, Hyeon-Mi Choi, Jae-Gyu Jeon
{"title":"Usnic acid brief exposure suppresses cariogenic properties and complexity of <i>Streptococcus mutans</i> biofilms.","authors":"Santosh Pandit, Mi-A Kim, Ji-Eun Jung, Hyeon-Mi Choi, Jae-Gyu Jeon","doi":"10.1016/j.bioflm.2024.100241","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids. The blanket of exopolysaccharides over the bacterial communities hinders the buffering by saliva, contributing to the initiation of tooth decay followed by the progression of dental caries. Considering the current interest towards the use of natural antimicrobial agents to disarm the cariogenic properties of dental biofilm, this study evaluated the antimicrobial activity and the effect of twice daily brief exposure (1 min) of usnic acid on acid production, acid tolerance and development of 3-dimensional architecture of <i>Streptococcus mutans</i> biofilm. Herein, biofilms were briefly treated twice daily during biofilm development and biofilms were analyzed by using biochemical, microbiological and microscopic examination. Results obtained in this study showed a significant reduction in virulence properties of biofilm cells treated with usnic acid in compared to non-treated biofilms. Furthermore, twice daily brief exposure of usnic acid significantly disrupted the acid production and reduced the complexity of <i>Streptococcus mutans</i> biofilm by disrupting the EPS production. Brief exposure of usnic acid inhibited the production of glucosyltransferase (GTF) enzymes and their enzymatic activity leading to inhibition in production of EPS on the biofilm matrix. In conclusion, usnic acid treatment reduced the cariogenic properties and complexity of <i>S. mutans</i> biofilm by inhibiting acid production, acid tolerance and disrupting extracellular polysaccharide (EPS) formation, indicating its potential for preventing dental caries.</p>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"8 ","pages":"100241"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652789/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bioflm.2024.100241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids. The blanket of exopolysaccharides over the bacterial communities hinders the buffering by saliva, contributing to the initiation of tooth decay followed by the progression of dental caries. Considering the current interest towards the use of natural antimicrobial agents to disarm the cariogenic properties of dental biofilm, this study evaluated the antimicrobial activity and the effect of twice daily brief exposure (1 min) of usnic acid on acid production, acid tolerance and development of 3-dimensional architecture of Streptococcus mutans biofilm. Herein, biofilms were briefly treated twice daily during biofilm development and biofilms were analyzed by using biochemical, microbiological and microscopic examination. Results obtained in this study showed a significant reduction in virulence properties of biofilm cells treated with usnic acid in compared to non-treated biofilms. Furthermore, twice daily brief exposure of usnic acid significantly disrupted the acid production and reduced the complexity of Streptococcus mutans biofilm by disrupting the EPS production. Brief exposure of usnic acid inhibited the production of glucosyltransferase (GTF) enzymes and their enzymatic activity leading to inhibition in production of EPS on the biofilm matrix. In conclusion, usnic acid treatment reduced the cariogenic properties and complexity of S. mutans biofilm by inhibiting acid production, acid tolerance and disrupting extracellular polysaccharide (EPS) formation, indicating its potential for preventing dental caries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
期刊最新文献
Investigations into the growth and formation of biofilm by Leptospira biflexa at temperatures encountered during infection. Usnic acid brief exposure suppresses cariogenic properties and complexity of Streptococcus mutans biofilms. Bridging the Gap: Biofilm-mediated establishment of Bacillus velezensis on Trichoderma guizhouense mycelia Effect of shear rate on early Shewanella oneidensis adhesion dynamics monitored by deep learning Molecular characterization of gliotoxin synthesis in a biofilm model of Aspergillus fumigatus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1