Root-filling materials for endodontic surgery: biological and clinical aspects.

Biomaterial investigations in dentistry Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI:10.2340/biid.v11.42172
Andreas Koutroulis, Vasileios Kapralos, Dag Ørstavik, Pia Titterud Sunde
{"title":"Root-filling materials for endodontic surgery: biological and clinical aspects.","authors":"Andreas Koutroulis, Vasileios Kapralos, Dag Ørstavik, Pia Titterud Sunde","doi":"10.2340/biid.v11.42172","DOIUrl":null,"url":null,"abstract":"<p><p>The placement of root filling materials aims to prevent the occurrence of post-treatment apical periodontitis following completion of endodontic treatment. Materials should possess properties that will not permit bacterial invasion and infection, namely excellent sealing ability and/or antibacterial properties. In root-end filling procedures or repair of root perforations, the root filling materials are placed in a particularly challenging clinical environment, as they interface with a relatively large area with the periradicular tissues. The biological properties of these materials are therefore of significant importance. The current review discusses the most widely used materials for endodontic surgery (i.e., root-end filling and perforation repair), with particular focus on their biological characteristics, namely antibacterial properties and interactions with host tissue cells, together with clinical studies. Properties of amalgam, glass ionomer cements (GICs), resin systems, zinc oxide eugenol-based cements and hydraulic calcium silicate cements (HCSCs), together with representative and well-researched commercial materials in the context of their use in endodontic surgery are presented. While the use of HCSCs seems to offer several biological advantages, together with addressing issues with the initial formulation in the most recent versions, materials with different chemical compositions, such as zinc oxide eugenol-based cements, are still in use and appear to provide similar clinical success rates to HCSCs. Thus, the significance of the currently available materials on clinical outcomes remains unclear.</p>","PeriodicalId":72378,"journal":{"name":"Biomaterial investigations in dentistry","volume":"11 ","pages":"42172"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653206/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterial investigations in dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2340/biid.v11.42172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The placement of root filling materials aims to prevent the occurrence of post-treatment apical periodontitis following completion of endodontic treatment. Materials should possess properties that will not permit bacterial invasion and infection, namely excellent sealing ability and/or antibacterial properties. In root-end filling procedures or repair of root perforations, the root filling materials are placed in a particularly challenging clinical environment, as they interface with a relatively large area with the periradicular tissues. The biological properties of these materials are therefore of significant importance. The current review discusses the most widely used materials for endodontic surgery (i.e., root-end filling and perforation repair), with particular focus on their biological characteristics, namely antibacterial properties and interactions with host tissue cells, together with clinical studies. Properties of amalgam, glass ionomer cements (GICs), resin systems, zinc oxide eugenol-based cements and hydraulic calcium silicate cements (HCSCs), together with representative and well-researched commercial materials in the context of their use in endodontic surgery are presented. While the use of HCSCs seems to offer several biological advantages, together with addressing issues with the initial formulation in the most recent versions, materials with different chemical compositions, such as zinc oxide eugenol-based cements, are still in use and appear to provide similar clinical success rates to HCSCs. Thus, the significance of the currently available materials on clinical outcomes remains unclear.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Root-filling materials for endodontic surgery: biological and clinical aspects. Silane and acid etch cross contamination of dentin and composite reduced µ-tensile bond strength. Recipient of Biomaterial Investigations in Dentistry's Young Author Award 2023. Reliability and agreement of root length measurements during orthodontic treatment in images from different CBCT machines using multiplanar reconstruction. The sealing ability of different endodontic biomaterials as an intra-orifice barrier: evaluation with high-performance liquid chromatography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1