Characterizing stutter in single cells and the impact on multi-cell analysis.

Amber C W Vandepoele, Natalie Novotna, Dan Myers, Michael A Marciano
{"title":"Characterizing stutter in single cells and the impact on multi-cell analysis.","authors":"Amber C W Vandepoele, Natalie Novotna, Dan Myers, Michael A Marciano","doi":"10.1016/j.fsigen.2024.103211","DOIUrl":null,"url":null,"abstract":"<p><p>Short tandem repeat analysis is a robust and reliable DNA analysis technique that aids in source identification of a biological sample. However, the interpretation, particularly when DNA mixtures are present at low levels, can be complicated by the presence of PCR artifacts most commonly referred to as stutter. The presence of stutter products can increase the difficulty of interpretation in DNA mixtures as well as low-level DNA samples down to a single cell. Stutter product formation is stochastic in nature and although methods exist that can estimate the magnitude of stutter product formation, it still is not well understood. With the increased sensitivity of forensic DNA analyses, it has become possible to obtain interpretable DNA profiles from as low as 6.6 pg of DNA, or a single human diploid cell. However, this presents an interpretational challenge because the stutter in these low-level DNA samples might stray from the expected patterns observed in high-level DNA samples. Therefore, this project focuses on characterizing stutter in single cell samples to help generate a deeper understanding of stutter and provide a guide for detecting and evaluating stutter in low-level samples. Stutter analysis was performed using data generated from 180 single cells isolated with the DEPArrayTM NxT, amplified using the PowerPlex Fusion 6 C amplification kit at 29 or 30 cycles. Stutter was successfully characterized in single cells and stutter percentages were highly elevated compared to high-level samples where the variance increased as the number of cells being analyzed decreased leading to potential high stutter at low DNA levels. Using empirical and simulated (resampled) data, this study also reinforces historically relevant patterns in stutter product formation and demonstrates the relative differences in stutter in n-1, n-2 and n + 1 stutter product formation in simple, complex and compound repeats.</p>","PeriodicalId":94012,"journal":{"name":"Forensic science international. Genetics","volume":"76 ","pages":"103211"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international. Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.fsigen.2024.103211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Short tandem repeat analysis is a robust and reliable DNA analysis technique that aids in source identification of a biological sample. However, the interpretation, particularly when DNA mixtures are present at low levels, can be complicated by the presence of PCR artifacts most commonly referred to as stutter. The presence of stutter products can increase the difficulty of interpretation in DNA mixtures as well as low-level DNA samples down to a single cell. Stutter product formation is stochastic in nature and although methods exist that can estimate the magnitude of stutter product formation, it still is not well understood. With the increased sensitivity of forensic DNA analyses, it has become possible to obtain interpretable DNA profiles from as low as 6.6 pg of DNA, or a single human diploid cell. However, this presents an interpretational challenge because the stutter in these low-level DNA samples might stray from the expected patterns observed in high-level DNA samples. Therefore, this project focuses on characterizing stutter in single cell samples to help generate a deeper understanding of stutter and provide a guide for detecting and evaluating stutter in low-level samples. Stutter analysis was performed using data generated from 180 single cells isolated with the DEPArrayTM NxT, amplified using the PowerPlex Fusion 6 C amplification kit at 29 or 30 cycles. Stutter was successfully characterized in single cells and stutter percentages were highly elevated compared to high-level samples where the variance increased as the number of cells being analyzed decreased leading to potential high stutter at low DNA levels. Using empirical and simulated (resampled) data, this study also reinforces historically relevant patterns in stutter product formation and demonstrates the relative differences in stutter in n-1, n-2 and n + 1 stutter product formation in simple, complex and compound repeats.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The IPEFA model: An initiative for online training and education as applied by the International Society for Forensic Genetics. Expression of Concern "Population data of 17 Y-STR loci in Nanyang Han population from Henan Province, Central China" [Forensic Sci. Int. Gene. 13 (2014) 145-146]. Expression of Concern "Population genetics of 17 Y-STR loci in a large Chinese Han population from Zhejiang Province, Eastern China" [Forensic Sci. Int. Genet. 5 (2011) e11-e13]. Expression of Concern: "Genetic population data of Yfiler Plus kit from 1434 unrelated Hans in Henan Province (Central China)" [Forensic Sci. Int. Genet. 22 (2016) e25-e27]. Expression of Concern: "Genetic profile of 17 Y chromosome STRs in the Guizhou Han population of southwestern China" [Forensic Sci. Int. Genet. 25 (2016) e6-e7].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1