A Normalizing Flow Based Validity-Preserving Inverse-Design Model for Nanoscale MOSFETs

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-12-20 DOI:10.1002/adts.202400988
Aasim Ashai, Oves Badami, Biplab Sarkar
{"title":"A Normalizing Flow Based Validity-Preserving Inverse-Design Model for Nanoscale MOSFETs","authors":"Aasim Ashai, Oves Badami, Biplab Sarkar","doi":"10.1002/adts.202400988","DOIUrl":null,"url":null,"abstract":"A two-stage inverse model for the design of gate-all-around nanowire metal oxide semiconductor field effect transistors (MOSFETs) is proposed in this article. The proposed model first validates the selection of output characteristics using a normalizing flow based generative model, and then predicts the device parameters corresponding to the valid output characteristics using a cascade of inverse and forward artificial neural networks (ANNs). This accurately captures any out-of-distribution datapoint in the output characteristics distribution and computes the device parameters through the inverse ANN, avoiding any conflicts created by non-unique mappings. The two-stage model instantly predicts possible device designs for a target output characteristic set without going for multiple iterations to arrive at a device-design, highlighting the accuracy and robustness of the model.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"20 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400988","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A two-stage inverse model for the design of gate-all-around nanowire metal oxide semiconductor field effect transistors (MOSFETs) is proposed in this article. The proposed model first validates the selection of output characteristics using a normalizing flow based generative model, and then predicts the device parameters corresponding to the valid output characteristics using a cascade of inverse and forward artificial neural networks (ANNs). This accurately captures any out-of-distribution datapoint in the output characteristics distribution and computes the device parameters through the inverse ANN, avoiding any conflicts created by non-unique mappings. The two-stage model instantly predicts possible device designs for a target output characteristic set without going for multiple iterations to arrive at a device-design, highlighting the accuracy and robustness of the model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于归一化流的纳米级mosfet有效性保持反设计模型
本文提出了一种栅极全能纳米线金属氧化物半导体场效应晶体管(mosfet)设计的两阶段反演模型。该模型首先使用基于归一化流的生成模型验证输出特性的选择,然后使用反向和正向人工神经网络(ann)级联预测与有效输出特性对应的设备参数。这可以准确地捕获输出特征分布中的任何分布外数据点,并通过逆人工神经网络计算设备参数,避免了非唯一映射产生的任何冲突。两阶段模型立即预测目标输出特性集的可能设备设计,而无需进行多次迭代以达到设备设计,突出了模型的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Numerical Analysis and Artificial Neural Networks for Solving Nonlinear Tuberculosis Model in SEITR Framework Rolling Bearing Fault Diagnosis Based on 2D CNN and Hybrid Kernel Fuzzy SVM A Variability-Aware Behavioral Model of Monolayer MoS2 RRAM for Tunable Stochastic Sources Numerical Approximation of the Fractional Model of Atmospheric Dynamics of CO2 Using the Gegenbauer Wavelet Collocation Method First-Principles Study on Introducing Fluorine Doping and Sulfur Vacancy into MoS2 for Advanced Lithium Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1