A Normalizing Flow Based Validity-Preserving Inverse-Design Model for Nanoscale MOSFETs

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-12-20 DOI:10.1002/adts.202400988
Aasim Ashai, Oves Badami, Biplab Sarkar
{"title":"A Normalizing Flow Based Validity-Preserving Inverse-Design Model for Nanoscale MOSFETs","authors":"Aasim Ashai,&nbsp;Oves Badami,&nbsp;Biplab Sarkar","doi":"10.1002/adts.202400988","DOIUrl":null,"url":null,"abstract":"<p>A two-stage inverse model for the design of gate-all-around nanowire metal oxide semiconductor field effect transistors (MOSFETs) is proposed in this article. The proposed model first validates the selection of output characteristics using a normalizing flow based generative model, and then predicts the device parameters corresponding to the valid output characteristics using a cascade of inverse and forward artificial neural networks (ANNs). This accurately captures any out-of-distribution datapoint in the output characteristics distribution and computes the device parameters through the inverse ANN, avoiding any conflicts created by non-unique mappings. The two-stage model instantly predicts possible device designs for a target output characteristic set without going for multiple iterations to arrive at a device-design, highlighting the accuracy and robustness of the model.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"8 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adts.202400988","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A two-stage inverse model for the design of gate-all-around nanowire metal oxide semiconductor field effect transistors (MOSFETs) is proposed in this article. The proposed model first validates the selection of output characteristics using a normalizing flow based generative model, and then predicts the device parameters corresponding to the valid output characteristics using a cascade of inverse and forward artificial neural networks (ANNs). This accurately captures any out-of-distribution datapoint in the output characteristics distribution and computes the device parameters through the inverse ANN, avoiding any conflicts created by non-unique mappings. The two-stage model instantly predicts possible device designs for a target output characteristic set without going for multiple iterations to arrive at a device-design, highlighting the accuracy and robustness of the model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于归一化流的纳米级mosfet有效性保持反设计模型
本文提出了一种栅极全能纳米线金属氧化物半导体场效应晶体管(mosfet)设计的两阶段反演模型。该模型首先使用基于归一化流的生成模型验证输出特性的选择,然后使用反向和正向人工神经网络(ann)级联预测与有效输出特性对应的设备参数。这可以准确地捕获输出特征分布中的任何分布外数据点,并通过逆人工神经网络计算设备参数,避免了非唯一映射产生的任何冲突。两阶段模型立即预测目标输出特性集的可能设备设计,而无需进行多次迭代以达到设备设计,突出了模型的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Front Cover: High‐Throughput Calculation and Machine Learning‐Assisted Prediction of the Mechanical Properties of Refractory Multi‐Principal Element Alloys (Adv. Theory Simul. 1/2026) Issue Information (Adv. Theory Simul. 1/2026) Energetics and Kinetics of 2NO • +O 2 →2NO 2 • Reaction: A 90 Years Old Problem Single‐Mn‐Atom Chains Anchored on Carbon Nanotubes for Efficient Naphthalene Hydrocracking Building Metal–Graphene Supercells: Python Tool for Lattice Matching and DFT Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1