Qingquan He, Shicheng Pan, Tao Zhang, Xiuyuan Chen, An Chen, Gang Xu, Kun Zhou, Jing Li, Hongwei Zhu, Osman M. Bakr, Jun Pan
{"title":"Boosting Photovoltaic Efficiency: The Role of Functional Group Distribution in Perovskite Film Passivation","authors":"Qingquan He, Shicheng Pan, Tao Zhang, Xiuyuan Chen, An Chen, Gang Xu, Kun Zhou, Jing Li, Hongwei Zhu, Osman M. Bakr, Jun Pan","doi":"10.1002/smll.202410481","DOIUrl":null,"url":null,"abstract":"The utilization of small organic molecules with appropriate functional groups and geometric configurations for surface passivation is essential for achieving efficient and stable perovskite solar cells (PSCs). In this study, two isomers, 4-sulfonamidobenzoic acid (4-SA) and 3-sulfamobenzoic acid (3-SA), both featuring sulfanilamide and carboxyl functional groups arranged in different positions, are evaluated for their effectiveness in passivating defects of the perovskite layer. The calculation and characterization results reveal that 3-SA, with its meta-substitution, offered superior passivation compared to the para-substituted 4-SA, leading to enhanced charge carrier dynamics and extraction efficiency. The devices treated with 3-SA demonstrates a notable increase in power conversion efficiency from 21.50% to 23.30%. Moreover, these devices maintain over 90% of their initial efficiency after 2000 h in a 30% relative humidity environment, showcasing exceptional long-term stability. This research advances strategic design approaches for small molecule passivation, providing critical insights for the enhancement of perovskite optoelectronic applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"7 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410481","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of small organic molecules with appropriate functional groups and geometric configurations for surface passivation is essential for achieving efficient and stable perovskite solar cells (PSCs). In this study, two isomers, 4-sulfonamidobenzoic acid (4-SA) and 3-sulfamobenzoic acid (3-SA), both featuring sulfanilamide and carboxyl functional groups arranged in different positions, are evaluated for their effectiveness in passivating defects of the perovskite layer. The calculation and characterization results reveal that 3-SA, with its meta-substitution, offered superior passivation compared to the para-substituted 4-SA, leading to enhanced charge carrier dynamics and extraction efficiency. The devices treated with 3-SA demonstrates a notable increase in power conversion efficiency from 21.50% to 23.30%. Moreover, these devices maintain over 90% of their initial efficiency after 2000 h in a 30% relative humidity environment, showcasing exceptional long-term stability. This research advances strategic design approaches for small molecule passivation, providing critical insights for the enhancement of perovskite optoelectronic applications.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.