Optimal Cell Length for Exploration and Exploitation in Chemotactic Planktonic Bacteria

IF 4.3 2区 生物学 Q2 MICROBIOLOGY Environmental microbiology Pub Date : 2024-12-19 DOI:10.1111/1462-2920.70021
Òscar Guadayol, Rudi Schuech, Stuart Humphries
{"title":"Optimal Cell Length for Exploration and Exploitation in Chemotactic Planktonic Bacteria","authors":"Òscar Guadayol,&nbsp;Rudi Schuech,&nbsp;Stuart Humphries","doi":"10.1111/1462-2920.70021","DOIUrl":null,"url":null,"abstract":"<p>Elongated morphologies are prevalent among motile bacterioplankton in aquatic systems. This is often attributed to enhanced chemotactic ability, but how long is best? We hypothesized the existence of an optimal cell length for efficient chemotaxis resulting from shape-imposed physical constraints acting on the trade-off between rapid exploration versus efficient exploitation of nutrient sources. To test this hypothesis, we evaluated the chemotactic performance of elongated cephalexin-treated Escherichia coli towards α-methyl-aspartate in a microfluidic device creating linear, stable and quiescent chemical gradients. Our experiments showed cells of intermediate length aggregating most tightly to the chemoattractant source. A sensitivity analysis of an Individual-Based-Model replicating these results showed that 1) cells of intermediate length are optimal at transient states, whereas at steady state longest cells are best, 2) poor chemotactic performance of very short cells is caused by directionality loss, and 3) long cells are penalized by brief, slow runs. Finally, we evaluated chemotactic performance of cells of different length with simulations of a phycosphere, and found that long cells swimming in a run-and-reverse pattern with extended runs and moderate speeds are most efficient in this microenvironment. Overall, our results suggest that the stability of the chemical landscape plays a role in cell-size selection.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elongated morphologies are prevalent among motile bacterioplankton in aquatic systems. This is often attributed to enhanced chemotactic ability, but how long is best? We hypothesized the existence of an optimal cell length for efficient chemotaxis resulting from shape-imposed physical constraints acting on the trade-off between rapid exploration versus efficient exploitation of nutrient sources. To test this hypothesis, we evaluated the chemotactic performance of elongated cephalexin-treated Escherichia coli towards α-methyl-aspartate in a microfluidic device creating linear, stable and quiescent chemical gradients. Our experiments showed cells of intermediate length aggregating most tightly to the chemoattractant source. A sensitivity analysis of an Individual-Based-Model replicating these results showed that 1) cells of intermediate length are optimal at transient states, whereas at steady state longest cells are best, 2) poor chemotactic performance of very short cells is caused by directionality loss, and 3) long cells are penalized by brief, slow runs. Finally, we evaluated chemotactic performance of cells of different length with simulations of a phycosphere, and found that long cells swimming in a run-and-reverse pattern with extended runs and moderate speeds are most efficient in this microenvironment. Overall, our results suggest that the stability of the chemical landscape plays a role in cell-size selection.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
期刊最新文献
Adaptive Responses of Cyanobacteria to Phosphate Limitation: A Focus on Marine Diazotrophs Microbial Community of a Sandy Beach Subterranean Estuary is Spatially Heterogeneous and Impacted by Winter Waves Unravelling a Latent Pathobiome Across Coral Reef Biotopes Optimal Cell Length for Exploration and Exploitation in Chemotactic Planktonic Bacteria Oxylipin Receptors and Their Role in Inter-Partner Signalling in a Model Cnidarian-Dinoflagellate Symbiosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1