Selective Pressure Influences Inter-Biome Dispersal in the Assembly of Saline Microbial Communities

IF 4.3 2区 生物学 Q2 MICROBIOLOGY Environmental microbiology Pub Date : 2024-12-19 DOI:10.1111/1462-2920.70019
Mateu Menéndez-Serra, Joan Cáliz, Xavier Triadó-Margarit, David Alonso, Emilio O. Casamayor
{"title":"Selective Pressure Influences Inter-Biome Dispersal in the Assembly of Saline Microbial Communities","authors":"Mateu Menéndez-Serra,&nbsp;Joan Cáliz,&nbsp;Xavier Triadó-Margarit,&nbsp;David Alonso,&nbsp;Emilio O. Casamayor","doi":"10.1111/1462-2920.70019","DOIUrl":null,"url":null,"abstract":"<p>Selection and dispersal are the primary processes influencing community assembly at both global and regional scales. Although the effectiveness of dispersal is often examined within the same biome, microscopic organisms demonstrate the capability to colonise and thrive across different biomes. In this study, we evaluated the relationship between (i) aquatic, (ii) sedimentary and (iii) aerial microbial communities, and how local selective pressures influence the potential impact of inter-biome dispersal, focusing on the salinity gradient stress over time in ephemeral saline lakes. Our taxonomic ordination analyses revealed that the three communities were distinctly segregated yet interconnected by shared populations. Organisms prevalent across the three biomes exhibited cosmopolitan behaviour based on global databases, indicating an inherent ability to cross biome boundaries. Cosmopolitan groups dominated the planktonic community at lower salinities but gradually diminished as salinity increased, resulting in communities dominated by aquatic specialists with more restricted environmental distributions. The aerial community was primarily composed of generalists, although airborne halophiles were also identified, suggesting long-range dispersal as a source of colonisers in isolated extremophile environments. Our findings contribute to a better understanding of the dynamic interplay between dispersal and selective pressures on community assembly across biomes, highlighting the significance of aerial microbiota in remote colonisation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70019","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Selection and dispersal are the primary processes influencing community assembly at both global and regional scales. Although the effectiveness of dispersal is often examined within the same biome, microscopic organisms demonstrate the capability to colonise and thrive across different biomes. In this study, we evaluated the relationship between (i) aquatic, (ii) sedimentary and (iii) aerial microbial communities, and how local selective pressures influence the potential impact of inter-biome dispersal, focusing on the salinity gradient stress over time in ephemeral saline lakes. Our taxonomic ordination analyses revealed that the three communities were distinctly segregated yet interconnected by shared populations. Organisms prevalent across the three biomes exhibited cosmopolitan behaviour based on global databases, indicating an inherent ability to cross biome boundaries. Cosmopolitan groups dominated the planktonic community at lower salinities but gradually diminished as salinity increased, resulting in communities dominated by aquatic specialists with more restricted environmental distributions. The aerial community was primarily composed of generalists, although airborne halophiles were also identified, suggesting long-range dispersal as a source of colonisers in isolated extremophile environments. Our findings contribute to a better understanding of the dynamic interplay between dispersal and selective pressures on community assembly across biomes, highlighting the significance of aerial microbiota in remote colonisation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择压力对盐渍微生物群落聚集过程中群落间扩散的影响
在全球和区域尺度上,选择和扩散是影响群落聚集的主要过程。尽管在同一生物群系内经常检查扩散的有效性,但微生物显示出在不同生物群系中定居和繁衍的能力。在这项研究中,我们评估了(i)水生、(ii)沉积和(iii)空中微生物群落之间的关系,以及局部选择压力如何影响生物群落间扩散的潜在影响,重点关注了短暂性盐湖随时间的盐度梯度压力。分类排序分析表明,这3个群落虽有明显的分离,但又有共同居群相互联系。基于全球数据库,在三个生物群系中普遍存在的生物表现出世界性行为,表明它们具有跨越生物群系边界的固有能力。在盐度较低时,世界性群体占浮游生物群落的主导地位,但随着盐度的增加而逐渐减少,导致群落以水生专家为主,环境分布更受限制。尽管也发现了空气嗜盐菌,但空中群落主要由通才组成,这表明在孤立的极端微生物环境中,远距离传播是殖民者的来源。我们的研究结果有助于更好地理解群落分布和选择压力之间的动态相互作用,突出了空中微生物群在远程定植中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
期刊最新文献
Contrasting Methane, Sulfide and Nitrogen-Loading Regimes in Bioreactors Shape Microbial Communities Originating From Methane-Rich Coastal Sediment of the Stockholm Archipelago Thermodynamics Underpinning the Microbial Community-Level Nitrogen Energy Metabolism Phylogenetic and Functional Diversity of Soluble Di-Iron Monooxygenases Highly Dynamic Archaeal and Bacterial Communities From the Surface to the Deep in the Atlantic Ocean Insects as Natural Hosts, Vectors and Reservoirs of Botulinum Neurotoxin-Producing Clostridia and Their Non-Toxinogenic Counterparts: Preliminary Evidence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1