Matthias Günther, Jana Sticht, Christian Freund, Thomas Höfer
{"title":"Antigen presentation by MHC-II is shaped by competitive and cooperative allosteric mechanisms of peptide exchange","authors":"Matthias Günther, Jana Sticht, Christian Freund, Thomas Höfer","doi":"10.1016/j.str.2024.11.014","DOIUrl":null,"url":null,"abstract":"Major histocompatibility complex class II (MHC-II) presents antigens to T helper cells. The spectrum of presented peptides is regulated by the exchange catalyst human leukocyte antigen DM (HLA-DM), which dissociates peptide-MHC-II complexes in the endosome. How susceptible a peptide is to HLA-DM is mechanistically not understood. Here, we present a data-driven mathematical model for the conformational landscape of MHC-II that explains the wide range of measured HLA-DM susceptibilities and predicts why some peptides are largely HLA-DM-resistant. We find that the conformational plasticity of MHC-II mediates both allosteric competition and cooperation between peptide and HLA-DM. Competition causes HLA-DM susceptibility to be proportional to the intrinsic peptide off-rate. Remarkably, diverse MHC-II allotypes with conserved HLA-DM interactions show a universal linear susceptibility function. However, HLA-DM-resistant peptides deviate from this susceptibility function; we predict resistance to be caused by fast peptide association with MHC-II. Thus, our study provides quantitative insight into peptide and MHC-II allotype parameters that shape class-II antigen presentation.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"20 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.11.014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Major histocompatibility complex class II (MHC-II) presents antigens to T helper cells. The spectrum of presented peptides is regulated by the exchange catalyst human leukocyte antigen DM (HLA-DM), which dissociates peptide-MHC-II complexes in the endosome. How susceptible a peptide is to HLA-DM is mechanistically not understood. Here, we present a data-driven mathematical model for the conformational landscape of MHC-II that explains the wide range of measured HLA-DM susceptibilities and predicts why some peptides are largely HLA-DM-resistant. We find that the conformational plasticity of MHC-II mediates both allosteric competition and cooperation between peptide and HLA-DM. Competition causes HLA-DM susceptibility to be proportional to the intrinsic peptide off-rate. Remarkably, diverse MHC-II allotypes with conserved HLA-DM interactions show a universal linear susceptibility function. However, HLA-DM-resistant peptides deviate from this susceptibility function; we predict resistance to be caused by fast peptide association with MHC-II. Thus, our study provides quantitative insight into peptide and MHC-II allotype parameters that shape class-II antigen presentation.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.