Laura Zamfirov, Ngoc-Minh Nguyen, Maria Elena Fernández-Sánchez, Paula Cambronera Ghiglione, Eliott Teston, Alexandre Dizeux, Thomas Tiennot, Emmanuel Farge, Charlie Demené, Mickael Tanter
{"title":"Acoustic-pressure-driven ultrasonic activation of the mechanosensitive receptor RET and of cell proliferation in colonic tissue","authors":"Laura Zamfirov, Ngoc-Minh Nguyen, Maria Elena Fernández-Sánchez, Paula Cambronera Ghiglione, Eliott Teston, Alexandre Dizeux, Thomas Tiennot, Emmanuel Farge, Charlie Demené, Mickael Tanter","doi":"10.1038/s41551-024-01300-9","DOIUrl":null,"url":null,"abstract":"<p>Ultrasound generates both compressive and shear mechanical forces in soft tissues. However, the specific mechanisms by which these forces activate cellular processes remain unclear. Here we show that low-intensity focused ultrasound can activate the mechanosensitive RET signalling pathway. Specifically, in mouse colon tissues ex vivo and in vivo, focused ultrasound induced RET phosphorylation in colonic crypts cells, which correlated with markers of proliferation and stemness when using hours-long insonication. The activation of the RET pathway is non-thermal, is linearly related to acoustic pressure and is independent of radiation-force-induced shear strain in tissue. Our findings suggest that ultrasound could be used to regulate cell proliferation, particularly in the context of regenerative medicine, and highlight the importance of adhering to current ultrasound-safety regulations for medical imaging.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"93 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01300-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound generates both compressive and shear mechanical forces in soft tissues. However, the specific mechanisms by which these forces activate cellular processes remain unclear. Here we show that low-intensity focused ultrasound can activate the mechanosensitive RET signalling pathway. Specifically, in mouse colon tissues ex vivo and in vivo, focused ultrasound induced RET phosphorylation in colonic crypts cells, which correlated with markers of proliferation and stemness when using hours-long insonication. The activation of the RET pathway is non-thermal, is linearly related to acoustic pressure and is independent of radiation-force-induced shear strain in tissue. Our findings suggest that ultrasound could be used to regulate cell proliferation, particularly in the context of regenerative medicine, and highlight the importance of adhering to current ultrasound-safety regulations for medical imaging.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.