Host–Guest Structure Enabling Electrocatalytic Hydrogen Evolution Performance by POM@TM-BDC Composites

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-12-20 DOI:10.1021/acs.langmuir.4c03855
Binghe Yang, Lige Gong, Hongtao Cui, Jihua Wang, Limin Dong, Yunhao Gu, Hui Li, Meijia Wang
{"title":"Host–Guest Structure Enabling Electrocatalytic Hydrogen Evolution Performance by POM@TM-BDC Composites","authors":"Binghe Yang, Lige Gong, Hongtao Cui, Jihua Wang, Limin Dong, Yunhao Gu, Hui Li, Meijia Wang","doi":"10.1021/acs.langmuir.4c03855","DOIUrl":null,"url":null,"abstract":"Developing economical, efficient, and earth-rich electrocatalysts for hydrogen evolution reaction (HER) is quite challenging and ideal. We propose that [P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6–</sup> as the guest, due to its excellent reversible 18 electron-transfer capacity and redox properties, and then TM-BDC (TM = Ni, Co, Fe, BDC = 1,4-benzene-dicarboxylate) as the host make [P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6–</sup> packaged and not escape due to its porous structure. Benefiting from strong redox-competent interactions between [P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6–</sup> and porous structures of TM-BDC and full exposure of abundant active sites, three {P<sub>2</sub>W<sub>18</sub>}@TM-BDC composites exhibited excellent HER activity, with {P<sub>2</sub>W<sub>18</sub>}@Ni-BDC requiring 198 mV (overpotentials) and 104 mV/dec (Tafel slope) for HER. More importantly, three {P<sub>2</sub>W<sub>18</sub>}@TM-BDC composites show excellent stability, with the voltage remaining nearly constant for 24 h. Meanwhile, the linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) curves of three {P<sub>2</sub>W<sub>18</sub>}@TM-BDC overlap well with the initial curve after the stability test. Our work offers a promising strategy for synthesizing high-performance electrocatalysts and broadens the scope of nonprecious metal composite material preparation.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"71 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03855","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing economical, efficient, and earth-rich electrocatalysts for hydrogen evolution reaction (HER) is quite challenging and ideal. We propose that [P2W18O62]6– as the guest, due to its excellent reversible 18 electron-transfer capacity and redox properties, and then TM-BDC (TM = Ni, Co, Fe, BDC = 1,4-benzene-dicarboxylate) as the host make [P2W18O62]6– packaged and not escape due to its porous structure. Benefiting from strong redox-competent interactions between [P2W18O62]6– and porous structures of TM-BDC and full exposure of abundant active sites, three {P2W18}@TM-BDC composites exhibited excellent HER activity, with {P2W18}@Ni-BDC requiring 198 mV (overpotentials) and 104 mV/dec (Tafel slope) for HER. More importantly, three {P2W18}@TM-BDC composites show excellent stability, with the voltage remaining nearly constant for 24 h. Meanwhile, the linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) curves of three {P2W18}@TM-BDC overlap well with the initial curve after the stability test. Our work offers a promising strategy for synthesizing high-performance electrocatalysts and broadens the scope of nonprecious metal composite material preparation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Jute–Copper Nanocomposite Embedded PSf Membrane for Sustainable and Efficient Heavy Metal Removal from Water Sources Evolution of Gas Desorption Hysteresis in Coal under Negative-Pressure Condition: Attenuation Mechanism and an Intuitive Index Electrospun Poly(vinyl Alcohol)/Chitin Nanofiber Membrane as a Sustainable Lithium-Ion Battery Separator Advanced Liquid-Entrapped Nanosurfaces for Optimized Atmospheric Water Harvesting Host–Guest Structure Enabling Electrocatalytic Hydrogen Evolution Performance by POM@TM-BDC Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1