Exceptional-Point-Enhanced Superior Sensing Using Asymmetric Coupled-Lossy-Resonator Based Optical Metasurface

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-12-20 DOI:10.1002/lpor.202401661
Basudev Nag Chowdhury, Pooja Lahiri, Nigel P. Johnson, Richard M. De La Rue, Basudev Lahiri
{"title":"Exceptional-Point-Enhanced Superior Sensing Using Asymmetric Coupled-Lossy-Resonator Based Optical Metasurface","authors":"Basudev Nag Chowdhury, Pooja Lahiri, Nigel P. Johnson, Richard M. De La Rue, Basudev Lahiri","doi":"10.1002/lpor.202401661","DOIUrl":null,"url":null,"abstract":"Exotic optical responses of designed metasurfaces, including non-Hermitian photonic systems exhibiting exceptional point (EP)-singularities, offer diverse applications in the field of quantum sensing, laser technology, gravitational-wave detection as well as biomedical instrumentation for weak signal detection. However, the sensitivity enhancement of such EP-sensors is limited by quantum/thermal noises. Here we propose a novel scheme of EP-based superior photonic sensing of any molecule, using suitably designed asymmetric coupled-lossy-resonators (ACLR) with a non-Hermitian Hamiltonian. Unlike conventional approach of EP-degeneracy lifting, the perturbing Hamiltonian of the molecular-vibron, in the present method, generates an EP-singularity by coupling with the ACLR that does not exhibit EP in the unperturbed condition. Raman spectroscopic measurements performed on such systems provide significantly enhanced peaks at the vibronic modes, thereby exploring a novel method for molecule detection with superior sensitivity. Such EP-sensing is experimentally demonstrated in the current work by detecting the relevant protein-vibrons of the recombinant Omicron strain of SARS-CoV-2 with 350%-2200% enhanced Raman intensities, using an optical-metasurface consisting of an array of Au-asymmetric split-ring-resonators as the ACLRs. This work will open up a novel field of EP-based superior photonic sensing of any molecule, in general, by appropriately designing the ACLR-structures for detecting molecular-vibrons with desired enhanced sensitivity.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"104 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401661","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Exotic optical responses of designed metasurfaces, including non-Hermitian photonic systems exhibiting exceptional point (EP)-singularities, offer diverse applications in the field of quantum sensing, laser technology, gravitational-wave detection as well as biomedical instrumentation for weak signal detection. However, the sensitivity enhancement of such EP-sensors is limited by quantum/thermal noises. Here we propose a novel scheme of EP-based superior photonic sensing of any molecule, using suitably designed asymmetric coupled-lossy-resonators (ACLR) with a non-Hermitian Hamiltonian. Unlike conventional approach of EP-degeneracy lifting, the perturbing Hamiltonian of the molecular-vibron, in the present method, generates an EP-singularity by coupling with the ACLR that does not exhibit EP in the unperturbed condition. Raman spectroscopic measurements performed on such systems provide significantly enhanced peaks at the vibronic modes, thereby exploring a novel method for molecule detection with superior sensitivity. Such EP-sensing is experimentally demonstrated in the current work by detecting the relevant protein-vibrons of the recombinant Omicron strain of SARS-CoV-2 with 350%-2200% enhanced Raman intensities, using an optical-metasurface consisting of an array of Au-asymmetric split-ring-resonators as the ACLRs. This work will open up a novel field of EP-based superior photonic sensing of any molecule, in general, by appropriately designing the ACLR-structures for detecting molecular-vibrons with desired enhanced sensitivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
A New Thermodynamic Approach to Multimode Fiber Self‐cleaning and Soliton Condensation Exceptional-Point-Enhanced Superior Sensing Using Asymmetric Coupled-Lossy-Resonator Based Optical Metasurface Photon‐Efficient, Hybrid Illumination for High‐Throughput Fourier Ptychographic Phase Microscopy Using Lenslet‐Integrated LED Illuminator Colorful Narrow‐Band Organic Polariton Light‐emitting Diodes Based on a Single Emitter Monolithically Integrated Ultra‐Low Threshold GeSn‐on‐Insulator Laser Using Rapid Melting Growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1