Insights into the enhanced ORR activity of FeN4-embedded graphene through interface interactions with metal substrates: Electronic vs. geometric descriptors

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-01-01 DOI:10.1016/j.mtphys.2024.101633
Silu Li , Donghai Wu , Lulu Gao , Jiahang Li , Gang Tang , Zaiping Zeng , Dongwei Ma
{"title":"Insights into the enhanced ORR activity of FeN4-embedded graphene through interface interactions with metal substrates: Electronic vs. geometric descriptors","authors":"Silu Li ,&nbsp;Donghai Wu ,&nbsp;Lulu Gao ,&nbsp;Jiahang Li ,&nbsp;Gang Tang ,&nbsp;Zaiping Zeng ,&nbsp;Dongwei Ma","doi":"10.1016/j.mtphys.2024.101633","DOIUrl":null,"url":null,"abstract":"<div><div>Recent experiments have revealed that the oxygen reduction reaction (ORR) performances of transition-metal and nitrogen codoped carbon (TM-N-C) can be drastically improved by interfacing with TM nanoparticles. However, the key factors that derive from this emerging composite SAC and can well correlate with the boosted ORR activity is still unclear. Herein, taking the FeN<sub>4</sub>-embedded graphene (FeN<sub>4</sub>-G) as example, we built a series of model heterointerface systems, by placing FeN<sub>4</sub>-G on various common TM surfaces (denoted as FeN<sub>4</sub>-M), to explore the enhancement origin. Based on extensive density functional theory calculations, we find that all the FeN<sub>4</sub>-M systems exhibit higher ORR activity than the free-standing FeN<sub>4</sub>-G, and even most FeN<sub>4</sub>-M systems are much more active than the Pt(111) surface. Furthermore, for the descriptor construction, however there is no apparent correlation between the ORR activity and the electronic structures of Fe active centers, the ones that are closely relevant with ORR activity of the free-standing FeN<sub>4</sub>-G. Instead, interestingly the interlayer distance between FeN<sub>4</sub>-G and the underlying metal substrates, an intrinsic geometric structure parameter, has been identified to linearly correlate with the binding strengths of ORR intermediates and ORR overpotential well. Present work provides a novel insight into the structure-activity relationship of the composite SACs consisting of Fe-N-C and metal nanoparticles.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101633"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324003092","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent experiments have revealed that the oxygen reduction reaction (ORR) performances of transition-metal and nitrogen codoped carbon (TM-N-C) can be drastically improved by interfacing with TM nanoparticles. However, the key factors that derive from this emerging composite SAC and can well correlate with the boosted ORR activity is still unclear. Herein, taking the FeN4-embedded graphene (FeN4-G) as example, we built a series of model heterointerface systems, by placing FeN4-G on various common TM surfaces (denoted as FeN4-M), to explore the enhancement origin. Based on extensive density functional theory calculations, we find that all the FeN4-M systems exhibit higher ORR activity than the free-standing FeN4-G, and even most FeN4-M systems are much more active than the Pt(111) surface. Furthermore, for the descriptor construction, however there is no apparent correlation between the ORR activity and the electronic structures of Fe active centers, the ones that are closely relevant with ORR activity of the free-standing FeN4-G. Instead, interestingly the interlayer distance between FeN4-G and the underlying metal substrates, an intrinsic geometric structure parameter, has been identified to linearly correlate with the binding strengths of ORR intermediates and ORR overpotential well. Present work provides a novel insight into the structure-activity relationship of the composite SACs consisting of Fe-N-C and metal nanoparticles.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过与金属衬底的界面相互作用,深入了解嵌入fen4的石墨烯增强的ORR活性:电子与几何描述符
最近的实验表明,过渡金属与氮共掺杂碳(TM- n- c)的氧还原反应(ORR)性能可以通过与TM纳米颗粒的界面处理得到显著改善。然而,从这种新出现的复合SAC中衍生出的关键因素,以及与ORR活性增强相关的关键因素仍不清楚。本文以嵌入fen4的石墨烯(FeN4-G)为例,通过将FeN4-G放置在各种常见的TM表面(记为FeN4-M)上,构建了一系列模型异质界面系统,探索增强来源。基于广泛的密度泛函理论计算,我们发现所有的FeN4-M体系都比独立的FeN4-G表现出更高的ORR活性,甚至大多数FeN4-M体系都比Pt(111)表面更活跃。此外,在描述子结构中,与独立FeN4-G的ORR活性密切相关的Fe活性中心的电子结构与ORR活性之间没有明显的相关性。相反,有趣的是,FeN4-G与底层金属衬底之间的层间距离(一个固有的几何结构参数)已被确定与ORR中间体和ORR过电位的结合强度呈线性相关。本研究为铁-氮-碳和金属纳米颗粒组成的复合SACs的构效关系提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
NEA GaAs Photocathode for Electron Source: From Growth, Cleaning, Activation to Performance Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively tuning phonon transport across Al/nonmetal interfaces through controlling interfacial bonding strength without modifying thermal conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1