Insights into the Enhanced ORR Activity of FeN4-Embedded Graphene Through Interface Interactions with Metal Substrates: Electronic vs. Geometric Descriptors

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-12-19 DOI:10.1016/j.mtphys.2024.101633
Silu Li, Donghai Wu, Lulu Gao, Jiahang Li, Gang Tang, Zaiping Zeng, Dongwei Ma
{"title":"Insights into the Enhanced ORR Activity of FeN4-Embedded Graphene Through Interface Interactions with Metal Substrates: Electronic vs. Geometric Descriptors","authors":"Silu Li, Donghai Wu, Lulu Gao, Jiahang Li, Gang Tang, Zaiping Zeng, Dongwei Ma","doi":"10.1016/j.mtphys.2024.101633","DOIUrl":null,"url":null,"abstract":"Recent experiments have revealed that the oxygen reduction reaction (ORR) performances of transition-metal and nitrogen codoped carbon (TM-N-C) can be drastically improved by interfacing with TM nanoparticles. However, the key factors that derive from this emerging composite SAC and can well correlate with the boosted ORR activity is still unclear. Herein, taking the FeN<sub>4</sub>-embedded graphene (FeN<sub>4</sub>-G) as example, we built a series of model heterointerface systems, by placing FeN<sub>4</sub>-G on various common TM surfaces (denoted as FeN<sub>4</sub>-M), to explore the enhancement origin. Based on extensive density functional theory calculations, we find that all the FeN<sub>4</sub>-M systems exhibit higher ORR activity than the free-standing FeN<sub>4</sub>-G, and even most FeN<sub>4</sub>-M systems are much more active than the Pt(111) surface. Furthermore, for the descriptor construction, however there is no apparent correlation between the ORR activity and the electronic structures of Fe active centers, the ones that are closely relevant with ORR activity of the free-standing FeN<sub>4</sub>-G. Instead, interestingly the interlayer distance between FeN<sub>4</sub>-G and the underlying metal substrates, an intrinsic geometric structure parameter, has been identified to linearly correlate with the binding strengths of ORR intermediates and ORR overpotential well. Present work provides a novel insight into the structure-activity relationship of the composite SACs consisting of Fe-N-C and metal nanoparticles.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"13 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2024.101633","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent experiments have revealed that the oxygen reduction reaction (ORR) performances of transition-metal and nitrogen codoped carbon (TM-N-C) can be drastically improved by interfacing with TM nanoparticles. However, the key factors that derive from this emerging composite SAC and can well correlate with the boosted ORR activity is still unclear. Herein, taking the FeN4-embedded graphene (FeN4-G) as example, we built a series of model heterointerface systems, by placing FeN4-G on various common TM surfaces (denoted as FeN4-M), to explore the enhancement origin. Based on extensive density functional theory calculations, we find that all the FeN4-M systems exhibit higher ORR activity than the free-standing FeN4-G, and even most FeN4-M systems are much more active than the Pt(111) surface. Furthermore, for the descriptor construction, however there is no apparent correlation between the ORR activity and the electronic structures of Fe active centers, the ones that are closely relevant with ORR activity of the free-standing FeN4-G. Instead, interestingly the interlayer distance between FeN4-G and the underlying metal substrates, an intrinsic geometric structure parameter, has been identified to linearly correlate with the binding strengths of ORR intermediates and ORR overpotential well. Present work provides a novel insight into the structure-activity relationship of the composite SACs consisting of Fe-N-C and metal nanoparticles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Corrigendum to <“Topological Materials for Near-Field Radiative Heat Transfer”> <[Materials Today Physics, Volume 46, August 2024, 101489]> API Phonons: Python Interfaces for Phonon Transport Modeling Hetero-structured construction of RGO nanosheets decorated by flower-like MoS2 toward the regulation of electromagnetic wave absorption performance Rapid Prediction of Phonon Density of States by Crystal Attention Graph Neural Network and High-Throughput Screening of Candidate Substrates for Wide Bandgap Electronic Cooling Insights into the Enhanced ORR Activity of FeN4-Embedded Graphene Through Interface Interactions with Metal Substrates: Electronic vs. Geometric Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1