Elucidating the role of combined latent hardening due to slip-slip and slip-twin interaction for modeling the evolution of crystallographic texture in high nitrogen steels

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2025-02-01 DOI:10.1016/j.ijplas.2024.104215
Bhanu Pratap Singh, Jyoti Ranjan Sahoo, Sumeet Mishra
{"title":"Elucidating the role of combined latent hardening due to slip-slip and slip-twin interaction for modeling the evolution of crystallographic texture in high nitrogen steels","authors":"Bhanu Pratap Singh,&nbsp;Jyoti Ranjan Sahoo,&nbsp;Sumeet Mishra","doi":"10.1016/j.ijplas.2024.104215","DOIUrl":null,"url":null,"abstract":"<div><div>A thorough framework for addressing the evolution of crystallographic texture in high nitrogen steels is developed in the present work. The elementary doctrine of the proposed framework is the inclusion of latent hardening due to slip-slip interaction along with slip-twin interaction in the visco-plastic self-consistent (VPSC) model for simulating the evolution of crystallographic texture in high nitrogen steels. The latent hardening due to slip-slip interaction is accounted for by specifying the complete interaction matrix (12 × 12), which allows all possible interactions between different slip systems. The latent hardening due to slip-slip interaction acts in combination with the latent hardening due to slip-twin interaction in raising the deformation resistance of the slip systems, which in turn enhances the propensity of twinning for the orientations along the β-fiber between the ideal Copper and S position. As a result, these β-fiber orientations are destabilized and reorient towards the <span><math><mi>α</mi></math></span>-fiber orientations in the Euler space. The proposed modeling framework is validated against experimental orientation distribution function sections after different rolling reductions. It was observed that inclusion of the combined latent hardening effect provides a superior agreement with the experimental textures compared to the standard approach of considering only the latent hardening due to slip-twin interaction in low stacking fault energy materials. The modeling work is aptly supported by detailed microstructural characterization involving estimation of twin fraction via X-ray line profile analysis, twin characteristics via transmission electron microscopy and the reorientation caused due to twinning via electron back scatter diffraction.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"185 ","pages":"Article 104215"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924003425","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A thorough framework for addressing the evolution of crystallographic texture in high nitrogen steels is developed in the present work. The elementary doctrine of the proposed framework is the inclusion of latent hardening due to slip-slip interaction along with slip-twin interaction in the visco-plastic self-consistent (VPSC) model for simulating the evolution of crystallographic texture in high nitrogen steels. The latent hardening due to slip-slip interaction is accounted for by specifying the complete interaction matrix (12 × 12), which allows all possible interactions between different slip systems. The latent hardening due to slip-slip interaction acts in combination with the latent hardening due to slip-twin interaction in raising the deformation resistance of the slip systems, which in turn enhances the propensity of twinning for the orientations along the β-fiber between the ideal Copper and S position. As a result, these β-fiber orientations are destabilized and reorient towards the α-fiber orientations in the Euler space. The proposed modeling framework is validated against experimental orientation distribution function sections after different rolling reductions. It was observed that inclusion of the combined latent hardening effect provides a superior agreement with the experimental textures compared to the standard approach of considering only the latent hardening due to slip-twin interaction in low stacking fault energy materials. The modeling work is aptly supported by detailed microstructural characterization involving estimation of twin fraction via X-ray line profile analysis, twin characteristics via transmission electron microscopy and the reorientation caused due to twinning via electron back scatter diffraction.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阐明由滑移和滑移孪晶相互作用引起的联合潜在硬化在模拟高氮钢晶体织构演变中的作用
在本工作中,开发了一个解决高氮钢晶体织构演变的完整框架。所提出的框架的基本原则是在模拟高氮钢晶体织构演变的粘塑性自一致(VPSC)模型中包含由于滑移相互作用和滑移-孪相互作用引起的潜在硬化。通过指定完整的相互作用矩阵(12 × 12)来解释滑移相互作用引起的潜在硬化,该矩阵允许不同滑移系统之间的所有可能的相互作用。滑移-滑移相互作用的潜在硬化与滑移-孪晶相互作用的潜在硬化共同作用,提高了滑移体系的变形抗力,进而增强了理想铜位和S位之间沿β-纤维取向的孪晶倾向。结果,这些β-纤维取向在欧拉空间中不稳定并向α- α-纤维取向重新定向。通过不同滚动约简后的实验取向分布函数截面对所提出的建模框架进行了验证。结果表明,在低层错能材料中,与只考虑滑移-孪晶相互作用的潜在硬化的标准方法相比,考虑联合潜在硬化效应与实验织构的一致性更好。建模工作得到了详细的微观结构表征的支持,包括通过x射线线剖面分析估计孪晶分数,通过透射电子显微镜估计孪晶特征,以及通过电子背散射衍射测量孪晶引起的重定向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
Manipulating the interfacial structures in titanium alloys containing interstitial solutes delivers ultra-high strength and ductility Effect of precipitate phase on the plastic deformation behavior of Alloy 718: in-situ tensile experiment and crystal plasticity simulation Enhancing fatigue life of low-carbon ultra-high strength steel by inducing multi-component precipitates Editorial Board Metastability-engineering strategy in CoCrFeMnNi-based medium- and high-entropy alloys: Unraveling the interplay with recrystallization, grain growth, and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1