Beneficial microorganisms: Regulating growth and defense for plant welfare

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2024-12-20 DOI:10.1111/pbi.14554
Yan Liu, Aiqin Shi, Yue Chen, Zhihui Xu, Yongxin Liu, Yanlai Yao, Yiming Wang, Baolei Jia
{"title":"Beneficial microorganisms: Regulating growth and defense for plant welfare","authors":"Yan Liu, Aiqin Shi, Yue Chen, Zhihui Xu, Yongxin Liu, Yanlai Yao, Yiming Wang, Baolei Jia","doi":"10.1111/pbi.14554","DOIUrl":null,"url":null,"abstract":"Beneficial microorganisms (BMs) promote plant growth and enhance stress resistance. This review summarizes how BMs induce growth promotion by improving nutrient uptake, producing growth-promoting hormones and stimulating root development. How BMs enhance disease resistance and help protect plants from abiotic stresses has also been explored. Growth-defense trade-offs are known to affect the ability of plants to survive under unfavourable conditions. This review discusses studies demonstrating that BMs regulate growth-defense trade-offs through microbe-associated molecular patterns and multiple pathways, including the leucine-rich repeat receptor-like kinase pathway, abscisic acid signalling pathway and specific transcriptional factor regulation. This multifaceted relationship underscores the significance of BMs in sustainable agriculture. Finally, the need for integration of artificial intelligence to revolutionize biofertilizer research has been highlighted. This review also elucidates the cutting-edge advancements and potential of plant-microbe synergistic microbial agents.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"1 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14554","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Beneficial microorganisms (BMs) promote plant growth and enhance stress resistance. This review summarizes how BMs induce growth promotion by improving nutrient uptake, producing growth-promoting hormones and stimulating root development. How BMs enhance disease resistance and help protect plants from abiotic stresses has also been explored. Growth-defense trade-offs are known to affect the ability of plants to survive under unfavourable conditions. This review discusses studies demonstrating that BMs regulate growth-defense trade-offs through microbe-associated molecular patterns and multiple pathways, including the leucine-rich repeat receptor-like kinase pathway, abscisic acid signalling pathway and specific transcriptional factor regulation. This multifaceted relationship underscores the significance of BMs in sustainable agriculture. Finally, the need for integration of artificial intelligence to revolutionize biofertilizer research has been highlighted. This review also elucidates the cutting-edge advancements and potential of plant-microbe synergistic microbial agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Genome of root celery and population genomic analysis reveal the complex breeding history of celery Beneficial microorganisms: Regulating growth and defense for plant welfare Characterization of a tomato chlh mis-sense mutant reveals a new function of ChlH in fruit ripening The transcription factor OsNAC25 regulates potassium homeostasis in rice Engineering a robust Cas12i3 variant-mediated wheat genome editing system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1