Jianhua Liu, Diru Liu, Qi An, Tingxu Chen, Yunbo Yu, Guangyan Xu, Hong He
{"title":"Reverse effect of metal-support interaction on platinum and iridium catalysts in ammonia selective oxidation","authors":"Jianhua Liu, Diru Liu, Qi An, Tingxu Chen, Yunbo Yu, Guangyan Xu, Hong He","doi":"10.1016/j.checat.2024.101229","DOIUrl":null,"url":null,"abstract":"Ammonia emissions from vehicles and power plants cause significant environmental concerns. Here, a range of platinum and iridium catalysts supported on oxides with various levels of reducibility were investigated in ammonia selective catalytic oxidation. Weak metal-support interaction (MSI) led to the formation of metal nanoparticles on irreducible Al<sub>2</sub>O<sub>3</sub>, whereas strong MSI (SMSI) induced the generation of single-atom metals on reducible CeO<sub>2</sub>. Notably, MSI demonstrated opposite effects on the catalytic performance of Pt-based catalysts (Pt/Al<sub>2</sub>O<sub>3</sub> ≫ Pt/TiO<sub>2</sub> > Pt/CeO<sub>2</sub>) and Ir-based catalysts (Ir/CeO<sub>2</sub> > Ir/TiO<sub>2</sub> ≫ Ir/Al<sub>2</sub>O<sub>3</sub>). Metallic Pt nanoparticles on Pt/Al<sub>2</sub>O<sub>3</sub> activated gaseous O<sub>2</sub> and promoted the low-temperature NH<sub>3</sub> oxidation. Conversely, on Ir/CeO<sub>2</sub> catalysts, the single-atom Ir-O-Ce site demonstrated high reactivity for NH<sub>3</sub> cleavage with an extremely low energy barrier, contributing to the superior low-temperature activity. This study provides insights into governing the MSI effect to regulate the structure on active sites of supported catalysts, thereby enhancing their catalytic performance.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"11 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia emissions from vehicles and power plants cause significant environmental concerns. Here, a range of platinum and iridium catalysts supported on oxides with various levels of reducibility were investigated in ammonia selective catalytic oxidation. Weak metal-support interaction (MSI) led to the formation of metal nanoparticles on irreducible Al2O3, whereas strong MSI (SMSI) induced the generation of single-atom metals on reducible CeO2. Notably, MSI demonstrated opposite effects on the catalytic performance of Pt-based catalysts (Pt/Al2O3 ≫ Pt/TiO2 > Pt/CeO2) and Ir-based catalysts (Ir/CeO2 > Ir/TiO2 ≫ Ir/Al2O3). Metallic Pt nanoparticles on Pt/Al2O3 activated gaseous O2 and promoted the low-temperature NH3 oxidation. Conversely, on Ir/CeO2 catalysts, the single-atom Ir-O-Ce site demonstrated high reactivity for NH3 cleavage with an extremely low energy barrier, contributing to the superior low-temperature activity. This study provides insights into governing the MSI effect to regulate the structure on active sites of supported catalysts, thereby enhancing their catalytic performance.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.