A Synergistic Hybrid of Sr3B2O6-SryTi0.6Fe0.4O3-δ (y < 1) as a Cathode for High-Performance Electrochemical Ammonia Synthesis via Protonic Ceramic Electrolysis Cells

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-12-19 DOI:10.1002/adfm.202418404
Kaihui Wang, Wenyan Zan, Yawei Li, Si-Dian Li, Zongping Shao, Huili Chen
{"title":"A Synergistic Hybrid of Sr3B2O6-SryTi0.6Fe0.4O3-δ (y < 1) as a Cathode for High-Performance Electrochemical Ammonia Synthesis via Protonic Ceramic Electrolysis Cells","authors":"Kaihui Wang, Wenyan Zan, Yawei Li, Si-Dian Li, Zongping Shao, Huili Chen","doi":"10.1002/adfm.202418404","DOIUrl":null,"url":null,"abstract":"The electrochemical nitrogen reduction reaction (e-NRR) presents a promising approach for environmentally friendly ammonia synthesis. However, the efficiency of ammonia synthesis can be hindered by competitive hydrogen evolution reactions (HER). Therefore, the development of a catalyst capable of suppressing HER is essential. In this study, a synergistic hybrid catalyst Sr(Ti<sub>0.6</sub>Fe<sub>0.4</sub>)<sub>0.8</sub>B<sub>0.2</sub>O<sub>3-δ</sub> [S(TF)B<sub>0.2</sub>], composed of Sr<sub>3</sub>B<sub>2</sub>O<sub>6</sub> (SB) and Sr<sub>y</sub>Ti<sub>0.6</sub>Fe<sub>0.4</sub>O<sub>3-δ</sub> (S<sub>y</sub>TF, y&lt;1) is synthesized and used as an electrocatalyst for electrochemical ammonia synthesis via protonic ceramic electrolysis cells, in which SB is utilized as a proton acceptor, thereby inhibiting HER and promoting proton-coupled electron transfer (PCET) for the ammonia synthesis. The formation of SB results in a deficiency of A-site cations in S<sub>y</sub>TF, leading to an increased number of oxygen vacancies in S(TF)B<sub>0.2</sub>. DFT calculation indicates that oxygen vacancies facilitate ammonia generation and desorption, adhering to the enzymatic pathway for NH<sub>3</sub> synthesis. Additionally, the grain boundary (GB) between S<sub>y</sub>TF and SB introduces further defects, which contribute to the enhancement of the eNRR. Research indicates that utilizing S(TF)B<sub>0.2</sub> as a catalyst enhances both the ammonia synthesis rate and Faradaic efficiency. This study presents a straightforward and efficient approach for the fabrication of eNRR catalysts.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"114 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418404","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical nitrogen reduction reaction (e-NRR) presents a promising approach for environmentally friendly ammonia synthesis. However, the efficiency of ammonia synthesis can be hindered by competitive hydrogen evolution reactions (HER). Therefore, the development of a catalyst capable of suppressing HER is essential. In this study, a synergistic hybrid catalyst Sr(Ti0.6Fe0.4)0.8B0.2O3-δ [S(TF)B0.2], composed of Sr3B2O6 (SB) and SryTi0.6Fe0.4O3-δ (SyTF, y<1) is synthesized and used as an electrocatalyst for electrochemical ammonia synthesis via protonic ceramic electrolysis cells, in which SB is utilized as a proton acceptor, thereby inhibiting HER and promoting proton-coupled electron transfer (PCET) for the ammonia synthesis. The formation of SB results in a deficiency of A-site cations in SyTF, leading to an increased number of oxygen vacancies in S(TF)B0.2. DFT calculation indicates that oxygen vacancies facilitate ammonia generation and desorption, adhering to the enzymatic pathway for NH3 synthesis. Additionally, the grain boundary (GB) between SyTF and SB introduces further defects, which contribute to the enhancement of the eNRR. Research indicates that utilizing S(TF)B0.2 as a catalyst enhances both the ammonia synthesis rate and Faradaic efficiency. This study presents a straightforward and efficient approach for the fabrication of eNRR catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sr3B2O6-SryTi0.6Fe0.4O3-δ (y < 1)的协同杂化阴极在质子陶瓷电解槽中用于高效电化学合成氨
电化学氮还原反应(e-NRR)是一种很有前途的环保合成氨方法。然而,竞争性析氢反应(HER)会阻碍氨合成的效率。因此,开发一种能够抑制HER的催化剂至关重要。本研究合成了由Sr3B2O6 (SB)和SryTi0.6Fe0.4O3-δ (SyTF, y<1)组成的协同杂化催化剂Sr(Ti0.6Fe0.4)0.8B0.2O3-δ [S(TF)B0.2],并通过质子陶瓷电解池作为电催化剂用于电化学合成氨,其中SB作为质子受体,抑制HER,促进合成氨的质子耦合电子转移(PCET)。SB的形成导致SyTF中a位阳离子的缺乏,导致S(TF)B0.2中氧空位数量增加。DFT计算表明,氧空位有利于氨的生成和解吸,符合酶促NH3合成的途径。此外,SyTF和SB之间的晶界(GB)引入了进一步的缺陷,这有助于提高eNRR。研究表明,以S(TF)B0.2为催化剂可提高氨合成速率和法拉第效率。本研究提出了一种简单有效的制备eNRR催化剂的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Photo-Oxidation Coupled Ion Intercalation for Sustainable Heavy Metal Removal and Resource Recovery Synergistic Effect of Mesoporous Carbon-Based Framework with Sodiophilic Nanoparticles for Stable Sodium Metal Anodes High-Performance Quasi-2D Sn-Pb Perovskite Photodetectors for High-Fidelity Image Sensing and Optical Communication Self-Grading and Surface-Preservation to Enhance the Compaction Density and Structural Stability of Li-Rich Mn-Based Cathode f-p-d Gradient Orbital Coupling Induced Spin State Enhancement of Atomic Fe Sites for Efficient and Stable Oxygen Reduction Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1