Design and Synthesis of Completely Nonfused Medium-Wide-Bandgap Acceptors for Efficient Organic Photovoltaic Cells

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-12-19 DOI:10.1021/acsami.4c17283
Shuohan Cheng, Ni Yang, Yong Cui, Wenxuan Wang, Yang Xiao, Jiangbo Dai, Junzhen Ren, Yafei Wang, Jianqiu Wang, Zhihao Chen, Yue Yu, Jianhui Hou
{"title":"Design and Synthesis of Completely Nonfused Medium-Wide-Bandgap Acceptors for Efficient Organic Photovoltaic Cells","authors":"Shuohan Cheng, Ni Yang, Yong Cui, Wenxuan Wang, Yang Xiao, Jiangbo Dai, Junzhen Ren, Yafei Wang, Jianqiu Wang, Zhihao Chen, Yue Yu, Jianhui Hou","doi":"10.1021/acsami.4c17283","DOIUrl":null,"url":null,"abstract":"Medium-wide-bandgap (MWBG) organic photovoltaic (OPV) cells have emerged as a promising category with distinctive application possibilities, especially in environments characterized by specific light conditions, such as indoor spaces. However, there are few high-efficiency MWBG acceptors, and most of them are constructed through high-cost fused central units, which limits the industrialization of MWBG OPV cells. Here, two completely nonfused MWBG acceptors, TBT-38 and TBT-43 with different alkoxy substituent positions on the thiophene rings, are synthesized. Due to the simple synthetic route and high yield, TBT-38 achieves the lowest material-only cost among high-efficiency MWBG acceptors. When blended with high-performance donor PBQx-TF, the TBT-43-based OPV cell exhibits a power conversion efficiency (PCE) of only 8.33%. In contrast, primarily due to higher exciton dissociation efficiency, charge transport capability, and favorable morphology, the TBT-38-based OPV cell delivers a PCE of 13.5% under one sun illumination, which is one of the highest results for completely nonfused OPV cells with absorption onset below 800 nm. Besides, the PBQx-TF:TBT-38-based OPV cell exhibits a PCE of 24.1% under indoor lighting. Our work presents a practical strategy for designing cost-efficient MWBG acceptors.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17283","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Medium-wide-bandgap (MWBG) organic photovoltaic (OPV) cells have emerged as a promising category with distinctive application possibilities, especially in environments characterized by specific light conditions, such as indoor spaces. However, there are few high-efficiency MWBG acceptors, and most of them are constructed through high-cost fused central units, which limits the industrialization of MWBG OPV cells. Here, two completely nonfused MWBG acceptors, TBT-38 and TBT-43 with different alkoxy substituent positions on the thiophene rings, are synthesized. Due to the simple synthetic route and high yield, TBT-38 achieves the lowest material-only cost among high-efficiency MWBG acceptors. When blended with high-performance donor PBQx-TF, the TBT-43-based OPV cell exhibits a power conversion efficiency (PCE) of only 8.33%. In contrast, primarily due to higher exciton dissociation efficiency, charge transport capability, and favorable morphology, the TBT-38-based OPV cell delivers a PCE of 13.5% under one sun illumination, which is one of the highest results for completely nonfused OPV cells with absorption onset below 800 nm. Besides, the PBQx-TF:TBT-38-based OPV cell exhibits a PCE of 24.1% under indoor lighting. Our work presents a practical strategy for designing cost-efficient MWBG acceptors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Rhamnolipid Modified Silica Nanoparticles Control Rice Blast Disease by Enhancing Antifungal Activity In Vivo and Antioxidant Defense System of Rice (Oryza sativa L.) Physical Vapor Deposition of High-Mobility P-Type Tellurium and Its Applications for Gate-Tunable van der Waals PN Photodiodes Broadband Shortwave Infrared-Emitting Cr3+- and Ni2+-Codoped Y3Al2Ga3O12 Phosphor with Excellent Thermal Stability for Multifunctional Applications Hafnium-Based Metal–Organic Framework Nanosystems Entrapping Squaraines for Efficient NIR-Responsive Photodynamic Therapy Water Uptake, Thin-Film Characterization, and Gravimetric pH-Sensing of Poly(vinylphosphonate)-Based Hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1