Dezun Ma, Yajuan Su, Navatha Shree Sharma, Grant Hatcher, Gitali Ganguli-Indra, Arup K. Indra, Adrian F. Gombart, Jingwei Xie
{"title":"Prolonged Immunomodulator Delivery Boosts Monocyte Exosome Secretion and Elevates Cathelicidin/LL-37 Content","authors":"Dezun Ma, Yajuan Su, Navatha Shree Sharma, Grant Hatcher, Gitali Ganguli-Indra, Arup K. Indra, Adrian F. Gombart, Jingwei Xie","doi":"10.1021/acsami.4c20695","DOIUrl":null,"url":null,"abstract":"Human cathelicidin LL-37 offers significant benefits to the immune system and in treating various diseases, but its therapeutic potential is hindered by low activity and instability in physiological environments. Here, we introduce a strategy to boost LL-37 levels in exosomes derived from THP-1 monocytes by incubating cells with electrospun nanofibers containing immunomodulators (e.g., 1α, 25-dihydroxyvitamin D<sub>3</sub> and VID400). Notably, the incubation with immunomodulator-loaded nanofibers not only increased LL-37 content in exosomes but also significantly enhanced the production of engineered exosomes. Moreover, these engineered exosomes demonstrated multiple biological activities, including promoting skin cell proliferation and migration, enhancing endothelial cell tube formation, and exhibiting antibacterial properties. Collectively, this study presents an approach to increasing both the yield of engineered exosomes and their LL-37 content, potentially offering a promising therapeutic option for wound healing, tissue regeneration, and infectious disease treatment.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"72 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20695","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Human cathelicidin LL-37 offers significant benefits to the immune system and in treating various diseases, but its therapeutic potential is hindered by low activity and instability in physiological environments. Here, we introduce a strategy to boost LL-37 levels in exosomes derived from THP-1 monocytes by incubating cells with electrospun nanofibers containing immunomodulators (e.g., 1α, 25-dihydroxyvitamin D3 and VID400). Notably, the incubation with immunomodulator-loaded nanofibers not only increased LL-37 content in exosomes but also significantly enhanced the production of engineered exosomes. Moreover, these engineered exosomes demonstrated multiple biological activities, including promoting skin cell proliferation and migration, enhancing endothelial cell tube formation, and exhibiting antibacterial properties. Collectively, this study presents an approach to increasing both the yield of engineered exosomes and their LL-37 content, potentially offering a promising therapeutic option for wound healing, tissue regeneration, and infectious disease treatment.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.