{"title":"Multifunctional ZnO-Loaded Colloidosomes with Multiple Synergies as a UV Filter","authors":"Jia Jia, Rong-Kun Liu, Qian Sun, Jie-Xin Wang","doi":"10.1021/acsami.4c18007","DOIUrl":null,"url":null,"abstract":"ZnO nanoparticles with high safety and stability are often used as active ingredients in sunscreens to protect the skin from ultraviolet rays. However, ZnO nanoparticles are easy to agglomerate, which will significantly affect the ultraviolet absorption and bacteriostatic properties, and the reactive oxygen species induced by the photocatalytic activity may result in irreversible secondary damage to the skin. Herein, the ZnO nanoparticles are dispersed uniformly on the surface of latex particles, and these composite particles are used as shell materials to construct self-assembled colloidosomes by high-gravity technology, which can improve the application properties with synergistic enrichment of the hollow structure. The ultraviolet resistance of colloidosomes is significantly higher than that of the pure ZnO nanoparticles. The higher the loading capacity, the more obvious the inhibition effect of colloidosomes on the growth of <i>Gram</i> bacteria. Furthermore, the antioxidant anthocyanin is in situ encapsulated in colloidosomes, and at a concentration of 2 g/L, the high free radical scavenging rate of 78% can be achieved. The construction of multifunctional colloidosomes provides a route for sunscreen and cosmetics applications.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"80 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18007","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ZnO nanoparticles with high safety and stability are often used as active ingredients in sunscreens to protect the skin from ultraviolet rays. However, ZnO nanoparticles are easy to agglomerate, which will significantly affect the ultraviolet absorption and bacteriostatic properties, and the reactive oxygen species induced by the photocatalytic activity may result in irreversible secondary damage to the skin. Herein, the ZnO nanoparticles are dispersed uniformly on the surface of latex particles, and these composite particles are used as shell materials to construct self-assembled colloidosomes by high-gravity technology, which can improve the application properties with synergistic enrichment of the hollow structure. The ultraviolet resistance of colloidosomes is significantly higher than that of the pure ZnO nanoparticles. The higher the loading capacity, the more obvious the inhibition effect of colloidosomes on the growth of Gram bacteria. Furthermore, the antioxidant anthocyanin is in situ encapsulated in colloidosomes, and at a concentration of 2 g/L, the high free radical scavenging rate of 78% can be achieved. The construction of multifunctional colloidosomes provides a route for sunscreen and cosmetics applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.