Huiran Yang, Chenhao Lu, Wangdi Zhang, Xupeng Li, Mengting Qi, Dongdong Han, Pu Wang, Yiqing Xie, Lu Li, Feng Zhao
{"title":"Application and Output Performance Comparison of Janus and Traditional Transition Metal Chalcogenides in Ytterbium-Doped Fiber Lasers","authors":"Huiran Yang, Chenhao Lu, Wangdi Zhang, Xupeng Li, Mengting Qi, Dongdong Han, Pu Wang, Yiqing Xie, Lu Li, Feng Zhao","doi":"10.1021/acsami.4c13636","DOIUrl":null,"url":null,"abstract":"Janus transition metal disulfide (TMD) monolayers have two distinct carbon surfaces that break the inherent ground external mirror symmetry. When compared to traditional TMD materials, Janus TMDs not only inherit the advantages of traditional TMDs but also have new characteristics that are different from those of traditional TMDs. This paper describes the development of a stable passive Q-switched ytterbium-doped fiber laser (YDFL) with operating wavelengths of 1032.9 and 1030.6 nm using two saturated absorbing materials: tantalum sulfide (TaSSe) and tantalum disulfide (TaS<sub>2</sub>). Our experimental results show that TaSSe, as a saturable absorber (SA), can generate a higher single-pulse energy and withstand higher pump power, and the single maximum pulse energy can reach 108.81 nJ. In the TaS<sub>2</sub>-SA Q-switched YDFL, increasing pump power from 180 to 330 mW results in a minimum pulse width of 3.18 μs. The maximum pulse energy is 50.68 nJ. This study showed that Janus TMD TaSSe has superior optical properties compared to traditional TMD TaS<sub>2</sub>, indicating that it has great potential for use in fiber laser development.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"97 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13636","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Janus transition metal disulfide (TMD) monolayers have two distinct carbon surfaces that break the inherent ground external mirror symmetry. When compared to traditional TMD materials, Janus TMDs not only inherit the advantages of traditional TMDs but also have new characteristics that are different from those of traditional TMDs. This paper describes the development of a stable passive Q-switched ytterbium-doped fiber laser (YDFL) with operating wavelengths of 1032.9 and 1030.6 nm using two saturated absorbing materials: tantalum sulfide (TaSSe) and tantalum disulfide (TaS2). Our experimental results show that TaSSe, as a saturable absorber (SA), can generate a higher single-pulse energy and withstand higher pump power, and the single maximum pulse energy can reach 108.81 nJ. In the TaS2-SA Q-switched YDFL, increasing pump power from 180 to 330 mW results in a minimum pulse width of 3.18 μs. The maximum pulse energy is 50.68 nJ. This study showed that Janus TMD TaSSe has superior optical properties compared to traditional TMD TaS2, indicating that it has great potential for use in fiber laser development.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.