Optimal blocks for maximizing the transaction fee revenue of Bitcoin miners

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Combinatorial Optimization Pub Date : 2024-12-19 DOI:10.1007/s10878-024-01249-0
Mohsen Alambardar Meybodi, Amir Goharshady, Mohammad Reza Hooshmandasl, Ali Shakiba
{"title":"Optimal blocks for maximizing the transaction fee revenue of Bitcoin miners","authors":"Mohsen Alambardar Meybodi, Amir Goharshady, Mohammad Reza Hooshmandasl, Ali Shakiba","doi":"10.1007/s10878-024-01249-0","DOIUrl":null,"url":null,"abstract":"<p>In this work, we consider a combinatorial optimization problem with direct applications in blockchain mining, namely finding the most lucrative blocks for Bitcoin miners, and propose optimal algorithmic solutions. Our experiments show that our algorithms increase the miners’ revenues by more than a million dollars per month. Modern blockchains reward their miners in two ways: (i) a base reward for each block that is mined, and (ii) the transaction fees of those transactions that are included in the mined block. The base reward is fixed by the respective blockchain’s protocol and is not under the miner’s control. Hence, for a miner who wishes to maximize earnings, the fundamental problem is to form a valid block with maximal total transaction fees and then try to mine it. Moreover, in many protocols, including Bitcoin itself, the base reward halves at predetermined intervals, hence increasing the importance of maximizing transaction fees and mining an optimal block. This problem is further complicated by the fact that transactions can be prerequisites of each other or have conflicts (in case of double-spending). In this work, we consider the problem of forming an optimal block, i.e. a valid block with maximal total transaction fees, given a set of unmined transactions. On the theoretical side, we first formally model our problem as an extension of <span>Knapsack</span> and then show that, unlike classical <span>Knapsack</span>, our problem is strongly NP-hard. We also show a hardness-of-approximation result. As such, there is no hope in solving it efficiently for general instances. However, we observe that its real-world instances are quite sparse, i.e. the transactions have very few dependencies and conflicts. Using this fact, and exploiting three well-known graph sparsity parameters, namely treedepth, treewidth and pathwidth, we present exact linear-time parameterized algorithms that are applicable to the real-world instances and obtain optimal results. On the practical side, we provide an extensive experimental evaluation demonstrating that our approach vastly outperforms the current Bitcoin miners in practice, obtaining a significant per-block average increase of 11.34 percent in transaction fee revenues which amounts to almost one million dollars per month.\n</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"263 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01249-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider a combinatorial optimization problem with direct applications in blockchain mining, namely finding the most lucrative blocks for Bitcoin miners, and propose optimal algorithmic solutions. Our experiments show that our algorithms increase the miners’ revenues by more than a million dollars per month. Modern blockchains reward their miners in two ways: (i) a base reward for each block that is mined, and (ii) the transaction fees of those transactions that are included in the mined block. The base reward is fixed by the respective blockchain’s protocol and is not under the miner’s control. Hence, for a miner who wishes to maximize earnings, the fundamental problem is to form a valid block with maximal total transaction fees and then try to mine it. Moreover, in many protocols, including Bitcoin itself, the base reward halves at predetermined intervals, hence increasing the importance of maximizing transaction fees and mining an optimal block. This problem is further complicated by the fact that transactions can be prerequisites of each other or have conflicts (in case of double-spending). In this work, we consider the problem of forming an optimal block, i.e. a valid block with maximal total transaction fees, given a set of unmined transactions. On the theoretical side, we first formally model our problem as an extension of Knapsack and then show that, unlike classical Knapsack, our problem is strongly NP-hard. We also show a hardness-of-approximation result. As such, there is no hope in solving it efficiently for general instances. However, we observe that its real-world instances are quite sparse, i.e. the transactions have very few dependencies and conflicts. Using this fact, and exploiting three well-known graph sparsity parameters, namely treedepth, treewidth and pathwidth, we present exact linear-time parameterized algorithms that are applicable to the real-world instances and obtain optimal results. On the practical side, we provide an extensive experimental evaluation demonstrating that our approach vastly outperforms the current Bitcoin miners in practice, obtaining a significant per-block average increase of 11.34 percent in transaction fee revenues which amounts to almost one million dollars per month.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比特币矿工交易费收入最大化的最优区块
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
期刊最新文献
Lollipop and cubic weight functions for graph pebbling Discrete circles: analytical definition and generation in the hexagonal grid Optimal blocks for maximizing the transaction fee revenue of Bitcoin miners Facial expression-based emotion recognition across diverse age groups: a multi-scale vision transformer with contrastive learning approach Online multiple one way non-preemptive time series search with interrelated prices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1