The calcium-dependent protein kinase CmaCPK4 regulates sex determination in pumpkin (Cucurbita maxima D.)

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-12-19 DOI:10.1093/plphys/kiae666
Chaojie Wang, Yunli Wang, Guichao Wang, Ke Zhang, Zhe Liu, Xiaopeng Li, Wenlong Xu, Zheng Li, Shuping Qu
{"title":"The calcium-dependent protein kinase CmaCPK4 regulates sex determination in pumpkin (Cucurbita maxima D.)","authors":"Chaojie Wang, Yunli Wang, Guichao Wang, Ke Zhang, Zhe Liu, Xiaopeng Li, Wenlong Xu, Zheng Li, Shuping Qu","doi":"10.1093/plphys/kiae666","DOIUrl":null,"url":null,"abstract":"Pumpkin (Cucurbita maxima D.) is typically monoecious with individual male and female flowers, and its yield is associated with the degree of femaleness, i.e. the ratio of female to male flowers produced by the plant. Subgynoecy represents a sex form with a high degree of femaleness, but the regulatory mechanisms in pumpkin remain poorly understood. In this study, using the F2 population crossed from the subgynoecious line 2013-12 and the monoecious line 9-6, we initially identified a recessive locus to control the subgynoecious trait, and named it sg1. After bulked segregant analysis with whole-genome resequencing (BSA-seq) and molecular marker linkage analysis, the sg1 locus was mapped to pumpkin chromosome 2. Genetic sequence analysis found a pumpkin calcium-dependent protein kinase (CPK) gene, CmaCPK4, in the mapping interval as the candidate gene. A retrotransposon insertion identified within the promoter elevated CmaCPK4 expression in 2013-12. Morphological characterization of near-isogenic lines (NILs) containing the sg1 allele showed increases in the ratio of female flowers and high ethylene contents in terminal buds compared to the receptor parent. Heterologous overexpression of CmaCPK4 significantly increased the ratio of female flowers in cucumber (Cucumis sativus). Furthermore, CmaCPK4 directly interacts with and phosphorylates 1-aminocyclopropane-1-carboxylate synthase 5 (CmaACS5) and 1-aminocyclopropane-1-carboxylate synthase 7 (CmaACS7), resulting in increased ethylene content in 2013-12, which affected pumpkin sex determination. These findings provide insights into the role of the CmaCPK4-CmaACS5/CmaACS7 module in ethylene-induced sex determination in pumpkin.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"31 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae666","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pumpkin (Cucurbita maxima D.) is typically monoecious with individual male and female flowers, and its yield is associated with the degree of femaleness, i.e. the ratio of female to male flowers produced by the plant. Subgynoecy represents a sex form with a high degree of femaleness, but the regulatory mechanisms in pumpkin remain poorly understood. In this study, using the F2 population crossed from the subgynoecious line 2013-12 and the monoecious line 9-6, we initially identified a recessive locus to control the subgynoecious trait, and named it sg1. After bulked segregant analysis with whole-genome resequencing (BSA-seq) and molecular marker linkage analysis, the sg1 locus was mapped to pumpkin chromosome 2. Genetic sequence analysis found a pumpkin calcium-dependent protein kinase (CPK) gene, CmaCPK4, in the mapping interval as the candidate gene. A retrotransposon insertion identified within the promoter elevated CmaCPK4 expression in 2013-12. Morphological characterization of near-isogenic lines (NILs) containing the sg1 allele showed increases in the ratio of female flowers and high ethylene contents in terminal buds compared to the receptor parent. Heterologous overexpression of CmaCPK4 significantly increased the ratio of female flowers in cucumber (Cucumis sativus). Furthermore, CmaCPK4 directly interacts with and phosphorylates 1-aminocyclopropane-1-carboxylate synthase 5 (CmaACS5) and 1-aminocyclopropane-1-carboxylate synthase 7 (CmaACS7), resulting in increased ethylene content in 2013-12, which affected pumpkin sex determination. These findings provide insights into the role of the CmaCPK4-CmaACS5/CmaACS7 module in ethylene-induced sex determination in pumpkin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
UBIQUITIN-CONJUGATING ENZYME34 mediates pyrophosphatase AVP1 turnover and regulates abiotic stress responses in Arabidopsis Protein phosphatase PP2C2 dephosphorylates transcription factor ZAT5 and modulates tomato fruit ripening Chromatin Accessibility Mediated by CHROMATIN REMODELING 11 Promotes Chilling Tolerance in Rice Cycling Dof Factor 3 mediates light-dependent ascorbate biosynthesis by activating GDP-L-galactose phosphorylase in Rosa roxburghii fruit The MADS-RIPENING INHIBITOR–DIVARICATA1 module regulates carotenoid biosynthesis in nonclimacteric Capsicum fruits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1