{"title":"Haplotype analysis incorporating ancestral origins identified novel genetic loci associated with chicken body weight using an advanced intercross line","authors":"Lina Bu, Yuzhe Wang, Lizhi Tan, Zilong Wen, Xiaoxiang Hu, Zhiwu Zhang, Yiqiang Zhao","doi":"10.1186/s12711-024-00946-y","DOIUrl":null,"url":null,"abstract":"The genome-wide association study (GWAS) is a powerful method for mapping quantitative trait loci (QTL). However, standard GWAS can detect only QTL that segregate in the mapping population. Crossing populations with different characteristics increases genetic variability but F2 or back-crosses lack mapping resolution due to the limited number of recombination events. This drawback can be overcome with advanced intercross line (AIL) populations, which increase the number recombination events and provide a more accurate mapping resolution. Recent studies in humans have revealed ancestry-dependent genetic architecture and shown the effectiveness of admixture mapping in admixed populations. Through the incorporation of line-of-origin effects and GWAS on an F9 AIL population, we identified genes that affect body weight at eight weeks of age (BW8) in chickens. The proposed ancestral-haplotype-based GWAS (testing only the origin regardless of the alleles) revealed three new QTLs on GGA12, GGA15, and GGA20. By using the concepts of ancestral homozygotes (individuals that carry two haplotypes of the same origin) and ancestral heterozygotes (carrying one haplotype of each origin), we identified 632 loci that exhibited high-parent (the heterozygote is better than both parents) and mid-parent (the heterozygote is better than the median of the parents) dominance across 12 chromosomes. Out of the 199 genes associated with BW8, EYA1, PDE1C, and MYC were identified as the best candidate genes for further validation. In addition to the candidate genes reported in this study, our research demonstrates the effectiveness of incorporating ancestral information in population genetic analyses, which can be broadly applicable for genetic mapping in populations generated by ancestors with distinct phenotypes and genetic backgrounds. Our methods can benefit both geneticists and biologists interested in the genetic determinism of complex traits.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"64 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00946-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The genome-wide association study (GWAS) is a powerful method for mapping quantitative trait loci (QTL). However, standard GWAS can detect only QTL that segregate in the mapping population. Crossing populations with different characteristics increases genetic variability but F2 or back-crosses lack mapping resolution due to the limited number of recombination events. This drawback can be overcome with advanced intercross line (AIL) populations, which increase the number recombination events and provide a more accurate mapping resolution. Recent studies in humans have revealed ancestry-dependent genetic architecture and shown the effectiveness of admixture mapping in admixed populations. Through the incorporation of line-of-origin effects and GWAS on an F9 AIL population, we identified genes that affect body weight at eight weeks of age (BW8) in chickens. The proposed ancestral-haplotype-based GWAS (testing only the origin regardless of the alleles) revealed three new QTLs on GGA12, GGA15, and GGA20. By using the concepts of ancestral homozygotes (individuals that carry two haplotypes of the same origin) and ancestral heterozygotes (carrying one haplotype of each origin), we identified 632 loci that exhibited high-parent (the heterozygote is better than both parents) and mid-parent (the heterozygote is better than the median of the parents) dominance across 12 chromosomes. Out of the 199 genes associated with BW8, EYA1, PDE1C, and MYC were identified as the best candidate genes for further validation. In addition to the candidate genes reported in this study, our research demonstrates the effectiveness of incorporating ancestral information in population genetic analyses, which can be broadly applicable for genetic mapping in populations generated by ancestors with distinct phenotypes and genetic backgrounds. Our methods can benefit both geneticists and biologists interested in the genetic determinism of complex traits.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.