Liu Chang, Hiromasa Tamaki, Tomoyasu Yokoyama, Kensuke Wakasugi, Satoshi Yotsuhashi, Minoru Kusaba, Artem R. Oganov, Ryo Yoshida
{"title":"Shotgun crystal structure prediction using machine-learned formation energies","authors":"Liu Chang, Hiromasa Tamaki, Tomoyasu Yokoyama, Kensuke Wakasugi, Satoshi Yotsuhashi, Minoru Kusaba, Artem R. Oganov, Ryo Yoshida","doi":"10.1038/s41524-024-01471-8","DOIUrl":null,"url":null,"abstract":"<p>Stable or metastable crystal structures of assembled atoms can be predicted by finding the global or local minima of the energy surface within a broad space of atomic configurations. Generally, this requires repeated first-principles energy calculations, which is often impractical for large crystalline systems. Here, we present significant progress toward solving the crystal structure prediction problem: we performed noniterative, single-shot screening using a large library of virtually created crystal structures with a machine-learning energy predictor. This shotgun method (ShotgunCSP) has two key technical components: transfer learning for accurate energy prediction of pre-relaxed crystalline states, and two generative models based on element substitution and symmetry-restricted structure generation to produce promising and diverse crystal structures. First-principles calculations were performed only to generate the training samples and to refine a few selected pre-relaxed crystal structures. The ShotunCSP method is less computationally intensive than conventional methods and exhibits exceptional prediction accuracy, reaching 93.3% in benchmark tests with 90 different crystal structures.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"264 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01471-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stable or metastable crystal structures of assembled atoms can be predicted by finding the global or local minima of the energy surface within a broad space of atomic configurations. Generally, this requires repeated first-principles energy calculations, which is often impractical for large crystalline systems. Here, we present significant progress toward solving the crystal structure prediction problem: we performed noniterative, single-shot screening using a large library of virtually created crystal structures with a machine-learning energy predictor. This shotgun method (ShotgunCSP) has two key technical components: transfer learning for accurate energy prediction of pre-relaxed crystalline states, and two generative models based on element substitution and symmetry-restricted structure generation to produce promising and diverse crystal structures. First-principles calculations were performed only to generate the training samples and to refine a few selected pre-relaxed crystal structures. The ShotunCSP method is less computationally intensive than conventional methods and exhibits exceptional prediction accuracy, reaching 93.3% in benchmark tests with 90 different crystal structures.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.