Graph-based multi-label feature selection with dynamic graph constraints and latent representation learning

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2024-12-20 DOI:10.1007/s10489-024-06116-3
Jianxia Bai, Yanhong Wu
{"title":"Graph-based multi-label feature selection with dynamic graph constraints and latent representation learning","authors":"Jianxia Bai,&nbsp;Yanhong Wu","doi":"10.1007/s10489-024-06116-3","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, multi-label feature selection with joint manifold learning and linear mapping has received much attention. However, the low-quality graph matrix used by existing methods leads to model limitations. Traditional linear mapping cannot learn the coupling relationship between different outputs. In addition, existing approaches ignore latent supervisory information in label correlation. To this end, we obtain a dynamic graph matrix with Laplace rank constraints by the <span>\\(L_{1}\\)</span> norm with a conventional graph matrix. We also mine more reliable supervised information from label correlations by introducing latent representation learning. Moreover, we integrate all the above terms into a linear mapping learning framework based on improved matrix decomposition, and design a simple and effective scheme based on alternating iterations to optimize this framework. Numerous experimental results validate the competitive advantage of the proposed method over existing state-of-the-art methods.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06116-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, multi-label feature selection with joint manifold learning and linear mapping has received much attention. However, the low-quality graph matrix used by existing methods leads to model limitations. Traditional linear mapping cannot learn the coupling relationship between different outputs. In addition, existing approaches ignore latent supervisory information in label correlation. To this end, we obtain a dynamic graph matrix with Laplace rank constraints by the \(L_{1}\) norm with a conventional graph matrix. We also mine more reliable supervised information from label correlations by introducing latent representation learning. Moreover, we integrate all the above terms into a linear mapping learning framework based on improved matrix decomposition, and design a simple and effective scheme based on alternating iterations to optimize this framework. Numerous experimental results validate the competitive advantage of the proposed method over existing state-of-the-art methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目前,联合流形学习和线性映射的多标签特征选择方法受到了广泛关注。然而,现有方法所使用的低质量图矩阵导致了模型的局限性。传统的线性映射无法学习不同输出之间的耦合关系。此外,现有方法忽略了标签相关性中的潜在监督信息。为此,我们通过传统图矩阵的 \(L_{1}\) 规范获得了具有拉普拉斯秩约束的动态图矩阵。我们还通过引入潜在表征学习,从标签相关性中挖掘出更可靠的监督信息。此外,我们在改进矩阵分解的基础上,将上述所有术语整合到线性映射学习框架中,并设计了一种基于交替迭代的简单有效的方案来优化这一框架。大量实验结果验证了所提出的方法相对于现有先进方法的竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
An attribute reduction algorithm using relative decision mutual information in fuzzy neighborhood decision system Efficient knowledge distillation using a shift window target-aware transformer Learning state-action correspondence across reinforcement learning control tasks via partially paired trajectories Stabilizing and improving federated learning with highly non-iid data and client dropout Short-term traffic flow prediction based on spatial–temporal attention time gated convolutional network with particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1