{"title":"Federated Learning for IoT: Applications, Trends, Taxonomy, Challenges, Current Solutions, and Future Directions","authors":"Mumin Adam;Uthman Baroudi","doi":"10.1109/OJCOMS.2024.3506214","DOIUrl":null,"url":null,"abstract":"The rapid advancement of Internet of Things (IoT) technology has transformed the digital landscape, enabling unprecedented connectivity between devices, people, and services. Traditionally, IoT-generated data was processed through centralized, cloud-based machine learning (ML) systems, raising significant privacy, security, and network bandwidth concerns. Federated Learning (FL) presents a viable alternative by transmitting only model parameters while preserving local data privacy. Despite the growing body of research, there remains a gap in comprehensive studies on FL-enabled IoT systems. This review provides an in-depth examination of the integration of FL with IoT, highlighting how FL enhances the efficiency, robustness, and adaptability of IoT systems. The paper introduces the foundational principles of FL, followed by an exploration of its key benefits in decentralized IoT applications. It presents a comparative analysis of FL-IoT architectures using quantitative metrics and proposes a taxonomy that clarifies the complexities and variations in FL-enabled IoT systems. The challenges of deploying FL in IoT environments are discussed, along with current trends and solutions aimed at overcoming these hurdles. Furthermore, the review explores the integration of FL with emerging technologies, including foundational models (FMs), green and sustainable 6th-generation (6G) IoT networks, and deep reinforcement learning (DRL), emphasizing their role in enhancing FL’s efficiency and resilience. It also covers FL frameworks and benchmarks, providing a valuable resource for researchers and practitioners in the field The article concludes by identifying promising research directions that are expected to drive future advancements in this dynamic and expanding field.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7842-7877"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767353","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10767353/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of Internet of Things (IoT) technology has transformed the digital landscape, enabling unprecedented connectivity between devices, people, and services. Traditionally, IoT-generated data was processed through centralized, cloud-based machine learning (ML) systems, raising significant privacy, security, and network bandwidth concerns. Federated Learning (FL) presents a viable alternative by transmitting only model parameters while preserving local data privacy. Despite the growing body of research, there remains a gap in comprehensive studies on FL-enabled IoT systems. This review provides an in-depth examination of the integration of FL with IoT, highlighting how FL enhances the efficiency, robustness, and adaptability of IoT systems. The paper introduces the foundational principles of FL, followed by an exploration of its key benefits in decentralized IoT applications. It presents a comparative analysis of FL-IoT architectures using quantitative metrics and proposes a taxonomy that clarifies the complexities and variations in FL-enabled IoT systems. The challenges of deploying FL in IoT environments are discussed, along with current trends and solutions aimed at overcoming these hurdles. Furthermore, the review explores the integration of FL with emerging technologies, including foundational models (FMs), green and sustainable 6th-generation (6G) IoT networks, and deep reinforcement learning (DRL), emphasizing their role in enhancing FL’s efficiency and resilience. It also covers FL frameworks and benchmarks, providing a valuable resource for researchers and practitioners in the field The article concludes by identifying promising research directions that are expected to drive future advancements in this dynamic and expanding field.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.