Enhancing AI Acceleration: A Calibration-Free, PVT-Robust Analog Compute-in-Memory Macro With Activation Functions

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Solid-State Circuits Letters Pub Date : 2024-12-04 DOI:10.1109/LSSC.2024.3510679
Hechen Wang;Renzhi Liu;Richard Dorrance;Deepak Dasalukunte;Niranjan Mylarappa Gowda;Brent Carlton
{"title":"Enhancing AI Acceleration: A Calibration-Free, PVT-Robust Analog Compute-in-Memory Macro With Activation Functions","authors":"Hechen Wang;Renzhi Liu;Richard Dorrance;Deepak Dasalukunte;Niranjan Mylarappa Gowda;Brent Carlton","doi":"10.1109/LSSC.2024.3510679","DOIUrl":null,"url":null,"abstract":"Most analog compute-in-memory (ACiM) works only focus on the multiple–accumulate (MAC) operation while neglecting the activation function (AF) in the digital domain. The frequent data conversion greatly reduces the benefits obtained by analog computing. This letter proposes an efficient 8-bit in-memory MAC with hybrid capacitor ladders. Then, a sparsity-aware R-2R DAC and an embedded SAR-ADC that reuses the capacitor ladders in the MAC are introduced to reduce the conversion overhead. Two on-chip AF schemes are included to further improve efficiency. Finally, differential signal path offers first-order PVT cancellation that improves computing accuracy and reduces the need for calibration.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"9-12"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10777064/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Most analog compute-in-memory (ACiM) works only focus on the multiple–accumulate (MAC) operation while neglecting the activation function (AF) in the digital domain. The frequent data conversion greatly reduces the benefits obtained by analog computing. This letter proposes an efficient 8-bit in-memory MAC with hybrid capacitor ladders. Then, a sparsity-aware R-2R DAC and an embedded SAR-ADC that reuses the capacitor ladders in the MAC are introduced to reduce the conversion overhead. Two on-chip AF schemes are included to further improve efficiency. Finally, differential signal path offers first-order PVT cancellation that improves computing accuracy and reduces the need for calibration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
期刊最新文献
Ultrasensitive Reset-Less Integrator-Based PIN-Diode Receiver With Input Current Control Enhancing AI Acceleration: A Calibration-Free, PVT-Robust Analog Compute-in-Memory Macro With Activation Functions A 10-Gb/s Optical Receiver With Monolithically Integrated PIN Photodiode, Novel AGC, and Sensitivity of –27.1 dBm for BER 10-3 A 15.4-ppm/°C GaN-Based Voltage Reference With Process-Variation-Immunity and High PSR for Electric Vehicle Power Systems A 0.41-ns CLK-OUT Delay, 0.22-μVrms Input-Referred Noise CMOS Integration Dynamic Comparator With Flipping Capacitor for Charge Reuse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1