Reduced Sample Complexity in Scenario-Based Control System Design via Constraint Scaling

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-11 DOI:10.1109/LCSYS.2024.3515861
Jaeseok Choi;Anand Deo;Constantino Lagoa;Anirudh Subramanyam
{"title":"Reduced Sample Complexity in Scenario-Based Control System Design via Constraint Scaling","authors":"Jaeseok Choi;Anand Deo;Constantino Lagoa;Anirudh Subramanyam","doi":"10.1109/LCSYS.2024.3515861","DOIUrl":null,"url":null,"abstract":"The scenario approach is widely used in robust control system design and chance-constrained optimization, maintaining convexity without requiring assumptions about the probability distribution of uncertain parameters. However, the approach can demand large sample sizes, making it intractable for safety-critical applications that require very low levels of constraint violation. To address this challenge, we propose a novel yet simple constraint scaling method, inspired by large deviations theory. Under mild nonparametric conditions on the underlying probability distribution, we show that our method yields an exponential reduction in sample size requirements for bilinear constraints with low violation levels compared to the classical approach, thereby significantly improving computational tractability. Numerical experiments on robust pole assignment problems support our theoretical findings.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2793-2798"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10793422/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The scenario approach is widely used in robust control system design and chance-constrained optimization, maintaining convexity without requiring assumptions about the probability distribution of uncertain parameters. However, the approach can demand large sample sizes, making it intractable for safety-critical applications that require very low levels of constraint violation. To address this challenge, we propose a novel yet simple constraint scaling method, inspired by large deviations theory. Under mild nonparametric conditions on the underlying probability distribution, we show that our method yields an exponential reduction in sample size requirements for bilinear constraints with low violation levels compared to the classical approach, thereby significantly improving computational tractability. Numerical experiments on robust pole assignment problems support our theoretical findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于约束缩放的场景控制系统设计降低样本复杂度
场景方法被广泛应用于鲁棒控制系统设计和机会约束优化中,它在不需要对不确定参数的概率分布进行假设的情况下保持系统的凸性。然而,这种方法可能需要大的样本量,使得它难以用于需要非常低程度的约束违反的安全关键应用程序。为了解决这一挑战,我们提出了一种新颖而简单的约束缩放方法,灵感来自大偏差理论。在潜在概率分布的轻度非参数条件下,我们表明,与经典方法相比,我们的方法在低违例水平双线性约束的样本量要求上呈指数减少,从而显着提高了计算可追溯性。鲁棒极点配置问题的数值实验支持了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Fast Data-Driven Predictive Control for LTI Systems: A Randomized Approach Feedback Regulation for Irreducible Max-Plus Linear Systems Adaptive Super-Twisting Sliding Mode Control With Disturbance Compensation for Speed Regulation of PMSM System Decentralized Fault Diagnosis for Constant-Time Automata Data-Driven Disturbance Decoupling Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1