Sample Complexity Bounds for Linear System Identification From a Finite Set

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-09 DOI:10.1109/LCSYS.2024.3514995
Nicolas Chatzikiriakos;Andrea Iannelli
{"title":"Sample Complexity Bounds for Linear System Identification From a Finite Set","authors":"Nicolas Chatzikiriakos;Andrea Iannelli","doi":"10.1109/LCSYS.2024.3514995","DOIUrl":null,"url":null,"abstract":"This letter considers a finite sample perspective on the problem of identifying an LTI system from a finite set of possible systems using trajectory data. To this end, we use the maximum likelihood estimator to identify the true system and provide an upper bound for its sample complexity. Crucially, the derived bound does not rely on a potentially restrictive stability assumption. Additionally, we leverage tools from information theory to provide a lower bound to the sample complexity that holds independently of the used estimator. The derived sample complexity bounds are analyzed analytically and numerically.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2751-2756"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10787218/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter considers a finite sample perspective on the problem of identifying an LTI system from a finite set of possible systems using trajectory data. To this end, we use the maximum likelihood estimator to identify the true system and provide an upper bound for its sample complexity. Crucially, the derived bound does not rely on a potentially restrictive stability assumption. Additionally, we leverage tools from information theory to provide a lower bound to the sample complexity that holds independently of the used estimator. The derived sample complexity bounds are analyzed analytically and numerically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限集线性系统辨识的样本复杂度界
这封信考虑了一个有限样本的角度,从一个有限的可能的系统使用轨迹数据识别LTI系统的问题。为此,我们使用极大似然估计器来识别真实系统,并为其样本复杂度提供上界。至关重要的是,推导出的界不依赖于一个潜在的限制性稳定性假设。此外,我们利用信息理论的工具来提供独立于所用估计器的样本复杂性的下限。对推导的样本复杂度界进行了解析和数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Fast Data-Driven Predictive Control for LTI Systems: A Randomized Approach Feedback Regulation for Irreducible Max-Plus Linear Systems Adaptive Super-Twisting Sliding Mode Control With Disturbance Compensation for Speed Regulation of PMSM System Decentralized Fault Diagnosis for Constant-Time Automata Data-Driven Disturbance Decoupling Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1