Guaranteed Feasibility in Differentially Private Linearly Constrained Convex Optimization

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-09 DOI:10.1109/LCSYS.2024.3513232
Alexander Benvenuti;Brendan Bialy;Miriam Dennis;Matthew Hale
{"title":"Guaranteed Feasibility in Differentially Private Linearly Constrained Convex Optimization","authors":"Alexander Benvenuti;Brendan Bialy;Miriam Dennis;Matthew Hale","doi":"10.1109/LCSYS.2024.3513232","DOIUrl":null,"url":null,"abstract":"Convex programming with linear constraints plays an important role in the operation of a number of everyday systems. However, absent any additional protections, revealing or acting on the solutions to such problems may reveal information about their constraints, which can be sensitive. Therefore, in this letter, we introduce a method to keep linear constraints private when solving a convex program. First, we prove that this method is differentially private and always generates a feasible optimization problem (i.e., one whose solution exists). Then we show that the solution to the privatized problem also satisfies the original, non-private constraints. Next, we bound the expected loss in performance from privacy, which is measured by comparing the cost with privacy to that without privacy. Simulation results apply this framework to constrained policy synthesis in a Markov decision process, and they show that a typical privacy implementation induces only an approximately 9% loss in solution quality.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2745-2750"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10783025/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Convex programming with linear constraints plays an important role in the operation of a number of everyday systems. However, absent any additional protections, revealing or acting on the solutions to such problems may reveal information about their constraints, which can be sensitive. Therefore, in this letter, we introduce a method to keep linear constraints private when solving a convex program. First, we prove that this method is differentially private and always generates a feasible optimization problem (i.e., one whose solution exists). Then we show that the solution to the privatized problem also satisfies the original, non-private constraints. Next, we bound the expected loss in performance from privacy, which is measured by comparing the cost with privacy to that without privacy. Simulation results apply this framework to constrained policy synthesis in a Markov decision process, and they show that a typical privacy implementation induces only an approximately 9% loss in solution quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有线性约束条件的凸编程在许多日常系统的运行中发挥着重要作用。然而,在没有任何额外保护措施的情况下,揭示或操作此类问题的解可能会泄露其约束信息,而这些信息可能是敏感的。因此,在这封信中,我们介绍了一种在求解凸程序时保持线性约束私密性的方法。首先,我们证明这种方法是有区别地保密的,并且总是能生成可行的优化问题(即解存在的问题)。然后,我们证明私有化问题的解也满足原始的非私有约束条件。接下来,我们对隐私带来的预期性能损失进行了约束,这种损失是通过比较有隐私和无隐私的成本来衡量的。仿真结果将此框架应用于马尔可夫决策过程中的约束策略合成,结果表明,典型的隐私实施只会导致解决方案质量下降约 9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Safety Verification of Stochastic Systems: A Set-Erosion Approach Quadrotor Fault-Tolerant Control at High Speed: A Model-Based Extended State Observer for Mismatched Disturbance Rejection Approach Kernelized Offset-Free Data-Driven Predictive Control for Nonlinear Systems Optimal Layout Co-Design in Hybrid Battery Packs for Electric Racing Cars Traffic Density Control for Heterogeneous Highway Systems With Input Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1