Pure Disturbance Sliding-Mode Feedback Control Based on Disturbance Observation for CCD-Assisted Line-of-Sight Stabilization

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Journal Pub Date : 2024-12-04 DOI:10.1109/JPHOT.2024.3511573
Yong Luo;Yi Cheng;Yongmei Huang;Qiongyan Wu;Dong He;Ge Ren;Guan Wang;Shi Zheng
{"title":"Pure Disturbance Sliding-Mode Feedback Control Based on Disturbance Observation for CCD-Assisted Line-of-Sight Stabilization","authors":"Yong Luo;Yi Cheng;Yongmei Huang;Qiongyan Wu;Dong He;Ge Ren;Guan Wang;Shi Zheng","doi":"10.1109/JPHOT.2024.3511573","DOIUrl":null,"url":null,"abstract":"Excellent disturbance rejection ability is essential for a photoelectric tracking system (PTS) based on the Charge-Couple Device (CCD) sensor, which is a premise guarantee for obtaining highly accurate tracking, especially under the condition of moving carriers with intense disturbances. The feedforward control method based on disturbance estimated from the system model output and sensor output is currently a commonly used strategy for disturbance compensation due to its ability to directly counteract the disturbances. This disturbance feedforward compensation method behaves sensitively in case of model mismatch caused by internal disturbances, which may lead to a significant reduction in the disturbance compensation effect or even cause system instability. In this paper, unlike disturbance feedforward compensation, a pure disturbance sliding-mode feedback control (DSMFBC) based on disturbance observation without additional sensors is proposed, ensuring faster and precise compensation for disturbance. In case of model mismatch, the observed disturbance is used to build the disturbance feedback control to maintain a more efficient disturbance compensation through the robustness that feedback naturally possesses. To achieve a stronger anti-disturbance capability, a sliding-mode nonlinear control method is used to design the control law. The experimental setup of PTS based on the fast-steering mirror (FSM) demonstrates that the method has better dynamic performance and disturbance rejection ratio.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778198","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10778198/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Excellent disturbance rejection ability is essential for a photoelectric tracking system (PTS) based on the Charge-Couple Device (CCD) sensor, which is a premise guarantee for obtaining highly accurate tracking, especially under the condition of moving carriers with intense disturbances. The feedforward control method based on disturbance estimated from the system model output and sensor output is currently a commonly used strategy for disturbance compensation due to its ability to directly counteract the disturbances. This disturbance feedforward compensation method behaves sensitively in case of model mismatch caused by internal disturbances, which may lead to a significant reduction in the disturbance compensation effect or even cause system instability. In this paper, unlike disturbance feedforward compensation, a pure disturbance sliding-mode feedback control (DSMFBC) based on disturbance observation without additional sensors is proposed, ensuring faster and precise compensation for disturbance. In case of model mismatch, the observed disturbance is used to build the disturbance feedback control to maintain a more efficient disturbance compensation through the robustness that feedback naturally possesses. To achieve a stronger anti-disturbance capability, a sliding-mode nonlinear control method is used to design the control law. The experimental setup of PTS based on the fast-steering mirror (FSM) demonstrates that the method has better dynamic performance and disturbance rejection ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
期刊最新文献
Transponder Aggregator for CDC-ROADM Nodes Supporting S-U Bands and 32/64-WDM Ports Monocular 3D Micro-PIV System Using Computational Imaging A Compact and Broadband Splitter to Interface Between Strip and Slot Waveguides Constellation Optimization for MIMO VLC System With Signal-Dependent Noise: Receiver-Side Design and Lookup Table Establishment Time Delay Signature Extraction of Optical Time-Delay Chaos Systems From Short and Noisy Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1