An efficient enhanced feature framework for grading of renal cell carcinoma using Histopathological Images

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2024-12-20 DOI:10.1007/s10489-024-06047-z
Faiqa Maqsood, Zhenfei Wang, Muhammad Mumtaz Ali, Baozhi Qiu, Tahir Mahmood, Raheem Sarwar
{"title":"An efficient enhanced feature framework for grading of renal cell carcinoma using Histopathological Images","authors":"Faiqa Maqsood,&nbsp;Zhenfei Wang,&nbsp;Muhammad Mumtaz Ali,&nbsp;Baozhi Qiu,&nbsp;Tahir Mahmood,&nbsp;Raheem Sarwar","doi":"10.1007/s10489-024-06047-z","DOIUrl":null,"url":null,"abstract":"<div><p>Renal cell carcinoma (RCC) represents the primary type of kidney cancer, responsible for approximately 85% of kidney cancer-related fatalities. Precise grading of this cancer is pivotal for tailoring effective treatments. Detecting RCC early, before metastasis, significantly improves survival rates. While Artificial intelligence-based classification methods have emerged for RCC, advancements in accuracy, processing efficiency, and memory utilization remain imperative. This study introduces the Efficient Enhanced Feature Framework (EFF-Net), a deep neural network architecture designed for RCC grading using histopathological image analysis. EFF-Net amalgamates potent feature extraction from convolutional layers with efficient Separable convolutional layers, aiming to accelerate model inference, reduce trainable parameters, mitigate overfitting, and elevate RCC grading precision. Evaluation across three distinct datasets showcases the EFF-Net's outstanding performance: achieving 91.90% accuracy, a precision of 91.4%, a recall of 91.8%, and a harmonic mean of precision and recall (F1 score) of 91.9% on the Kasturba Medical College (KMC) dataset. Additionally, on the Lung and Colon Dataset, EFF-Net achieved 99.8% accuracy, a precision of 99.7%, a recall of 99.9%, and a 98.7% F1 score. Similarly, the Acute Lymphoblastic Leukaemia dataset demonstrated remarkable performance: 99.8% accuracy, a precision of 99%, a recall of 99%, and a 99.7% F1 score. EFF-Net's superior accuracy surpasses existing state-of-the-art approaches while exhibiting reduced trainable parameters and computational requirements.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06047-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Renal cell carcinoma (RCC) represents the primary type of kidney cancer, responsible for approximately 85% of kidney cancer-related fatalities. Precise grading of this cancer is pivotal for tailoring effective treatments. Detecting RCC early, before metastasis, significantly improves survival rates. While Artificial intelligence-based classification methods have emerged for RCC, advancements in accuracy, processing efficiency, and memory utilization remain imperative. This study introduces the Efficient Enhanced Feature Framework (EFF-Net), a deep neural network architecture designed for RCC grading using histopathological image analysis. EFF-Net amalgamates potent feature extraction from convolutional layers with efficient Separable convolutional layers, aiming to accelerate model inference, reduce trainable parameters, mitigate overfitting, and elevate RCC grading precision. Evaluation across three distinct datasets showcases the EFF-Net's outstanding performance: achieving 91.90% accuracy, a precision of 91.4%, a recall of 91.8%, and a harmonic mean of precision and recall (F1 score) of 91.9% on the Kasturba Medical College (KMC) dataset. Additionally, on the Lung and Colon Dataset, EFF-Net achieved 99.8% accuracy, a precision of 99.7%, a recall of 99.9%, and a 98.7% F1 score. Similarly, the Acute Lymphoblastic Leukaemia dataset demonstrated remarkable performance: 99.8% accuracy, a precision of 99%, a recall of 99%, and a 99.7% F1 score. EFF-Net's superior accuracy surpasses existing state-of-the-art approaches while exhibiting reduced trainable parameters and computational requirements.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用组织病理学图像对肾细胞癌进行分级的高效增强特征框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
An attribute reduction algorithm using relative decision mutual information in fuzzy neighborhood decision system Efficient knowledge distillation using a shift window target-aware transformer Learning state-action correspondence across reinforcement learning control tasks via partially paired trajectories Stabilizing and improving federated learning with highly non-iid data and client dropout Short-term traffic flow prediction based on spatial–temporal attention time gated convolutional network with particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1