Climate displaces deposition as dominant driver of dissolved organic carbon concentrations in historically acidified lakes

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Biogeochemistry Pub Date : 2024-12-21 DOI:10.1007/s10533-024-01193-5
Allison M. Herreid, Hannah M. Fazekas, Sarah J. Nelson, Adam S. Wymore, Desneiges Murray, Ruth K. Varner, William H. McDowell
{"title":"Climate displaces deposition as dominant driver of dissolved organic carbon concentrations in historically acidified lakes","authors":"Allison M. Herreid,&nbsp;Hannah M. Fazekas,&nbsp;Sarah J. Nelson,&nbsp;Adam S. Wymore,&nbsp;Desneiges Murray,&nbsp;Ruth K. Varner,&nbsp;William H. McDowell","doi":"10.1007/s10533-024-01193-5","DOIUrl":null,"url":null,"abstract":"<div><p>Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s. An increased percentage of winter precipitation falling as rain was associated with elevated spring DOC concentrations, suggesting a mechanistic coupling between climate and DOC increases that will persist in coming decades as northern latitudes continue to warm. Drainage lakes situated in watersheds with fine-textured, deep soils and larger watershed areas exhibit greater variability in lake DOC concentrations compared to both seepage and drainage lakes with coarser, shallower soils, and smaller watershed areas. Capturing the spatial variability in interactions between climatic impacts and localized watershed characteristics is crucial for forecasting lentic carbon and nutrient dynamics, with implications for lake ecology and drinking water quality.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01193-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01193-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s. An increased percentage of winter precipitation falling as rain was associated with elevated spring DOC concentrations, suggesting a mechanistic coupling between climate and DOC increases that will persist in coming decades as northern latitudes continue to warm. Drainage lakes situated in watersheds with fine-textured, deep soils and larger watershed areas exhibit greater variability in lake DOC concentrations compared to both seepage and drainage lakes with coarser, shallower soils, and smaller watershed areas. Capturing the spatial variability in interactions between climatic impacts and localized watershed characteristics is crucial for forecasting lentic carbon and nutrient dynamics, with implications for lake ecology and drinking water quality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候取代沉积成为历史上酸化湖泊溶解有机碳浓度的主要驱动因素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
期刊最新文献
Potential of biochar to mitigate methane production in paddy soils—application of a new incubation and modelling approach Climate displaces deposition as dominant driver of dissolved organic carbon concentrations in historically acidified lakes Black spruce boreal forest soil solution inorganic nitrogen is highly resilient to 20 years of elevated nitrogen deposition Chemical determination of silica in seagrass leaves reveals two operational silica pools in Zostera marina Impact of leaching process for ion-adsorption rare earth ore on the characteristics of topsoil and the absorption of rare earth by Dicranopteris pedata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1