Improving smuon searches with neural networks

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS The European Physical Journal C Pub Date : 2025-01-22 DOI:10.1140/epjc/s10052-025-13748-3
Alan S. Cornell, Benjamin Fuks, Mark D. Goodsell, Anele M. Ncube
{"title":"Improving smuon searches with neural networks","authors":"Alan S. Cornell,&nbsp;Benjamin Fuks,&nbsp;Mark D. Goodsell,&nbsp;Anele M. Ncube","doi":"10.1140/epjc/s10052-025-13748-3","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate that neural networks can be used to improve search strategies, over existing strategies, in LHC searches for light electroweak-charged scalars that decay to a muon and a heavy invisible fermion. We propose a new search involving a neural network discriminator as a final cut and show that different signal regions can be defined using networks trained on different subsets of signal samples (distinguishing low-mass and high-mass regions). We also present a workflow using publicly-available analysis tools, that can lead, from background and signal simulation, to network training, through to finding projections for limits using an analysis and <span>ONNX</span> libraries to interface network and recasting tools. We provide an estimate of the sensitivity of our search from Run 2 LHC data, and projections for higher luminosities, showing a clear advantage over previous methods.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13748-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13748-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate that neural networks can be used to improve search strategies, over existing strategies, in LHC searches for light electroweak-charged scalars that decay to a muon and a heavy invisible fermion. We propose a new search involving a neural network discriminator as a final cut and show that different signal regions can be defined using networks trained on different subsets of signal samples (distinguishing low-mass and high-mass regions). We also present a workflow using publicly-available analysis tools, that can lead, from background and signal simulation, to network training, through to finding projections for limits using an analysis and ONNX libraries to interface network and recasting tools. We provide an estimate of the sensitivity of our search from Run 2 LHC data, and projections for higher luminosities, showing a clear advantage over previous methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用神经网络改进smuon搜索
我们证明了神经网络可以用来改进搜索策略,而不是现有的策略,在大型强子对撞机搜索轻的电弱带电标量,衰变为μ子和重的不可见费米子。我们提出了一种涉及神经网络鉴别器作为最终切割的新搜索,并表明可以使用在信号样本的不同子集(区分低质量和高质量区域)上训练的网络来定义不同的信号区域。我们还提供了一个使用公开可用的分析工具的工作流程,可以从背景和信号模拟到网络训练,通过使用分析和ONNX库来接口网络和重铸工具找到限制的投影。我们根据Run 2 LHC数据对我们的搜索灵敏度进行了估计,并对更高的亮度进行了预测,显示出比以前的方法明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
期刊最新文献
On the analytic generalization of particle deflection in the weak field regime and shadow size in light of EHT constraints for Schwarzschild-like black hole solutions \(\varLambda \)CDM model against gravity-thermodynamics conjecture: observational constraints after DESI 2024 Linear stability of a time-dependent, spherically symmetric background in beyond Horndeski theory and the speed of gravity waves Improving smuon searches with neural networks On the two-loop BSM corrections to \(h\longrightarrow \gamma \gamma \) in a triplet extension of the SM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1