Energy structure optimization and carbon emission control based on weighted mathematical modeling and CGE model

Q2 Energy Energy Informatics Pub Date : 2024-12-20 DOI:10.1186/s42162-024-00450-z
Sen Wang
{"title":"Energy structure optimization and carbon emission control based on weighted mathematical modeling and CGE model","authors":"Sen Wang","doi":"10.1186/s42162-024-00450-z","DOIUrl":null,"url":null,"abstract":"<div><p>The study employs Hebei Province as its research object and employs the weighting method for mathematical modeling to construct an energy structure optimization calculation model under carbon emission control. Secondly, a computable general equilibrium-based model is constructed for the purpose of assessing the impact of an optimal energy structure on the economic development of the province under different planning constraints. The results indicated that when the energy constraint increased from 0.8 to 1.2, the share of coal energy decreased to 61.19% and the share of petroleum energy decreased to 5.02%. The share of natural gas energy increased to 18.41% and the share of non-fossil fuel increased to 15.02%. The total cost of energy increased to 83.04 billion dollars and abatement cost decreased to 2.74 billion dollars. With the gradual completion of the planning constraints, the effect of emission reduction was gradually obvious, but the decline gradually decreased. While abatement costs could be decreased in tandem with rising energy costs, the macroeconomy and environment in the region suffered as a result of rising energy costs. The study indicates that in order to achieve sustainable regional economic development and align with the principles of ecological governance, it is essential to enhance energy management, actively advance the development of clean energy, and strive for equilibrium between economic growth, energy development, and ecological environmental protection. Concurrently, alternative energy sources must be identified through scientific and technological innovation in order to diminish reliance on fossil energy.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00450-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00450-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The study employs Hebei Province as its research object and employs the weighting method for mathematical modeling to construct an energy structure optimization calculation model under carbon emission control. Secondly, a computable general equilibrium-based model is constructed for the purpose of assessing the impact of an optimal energy structure on the economic development of the province under different planning constraints. The results indicated that when the energy constraint increased from 0.8 to 1.2, the share of coal energy decreased to 61.19% and the share of petroleum energy decreased to 5.02%. The share of natural gas energy increased to 18.41% and the share of non-fossil fuel increased to 15.02%. The total cost of energy increased to 83.04 billion dollars and abatement cost decreased to 2.74 billion dollars. With the gradual completion of the planning constraints, the effect of emission reduction was gradually obvious, but the decline gradually decreased. While abatement costs could be decreased in tandem with rising energy costs, the macroeconomy and environment in the region suffered as a result of rising energy costs. The study indicates that in order to achieve sustainable regional economic development and align with the principles of ecological governance, it is essential to enhance energy management, actively advance the development of clean energy, and strive for equilibrium between economic growth, energy development, and ecological environmental protection. Concurrently, alternative energy sources must be identified through scientific and technological innovation in order to diminish reliance on fossil energy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权数学建模和CGE模型的能源结构优化与碳排放控制
本研究以河北省为研究对象,采用加权法进行数学建模,构建了碳排放控制下的能源结构优化计算模型。其次,构建了基于一般均衡的可计算模型,以评估不同规划约束下最优能源结构对该省经济发展的影响。结果表明,当能源约束由0.8增加到1.2时,煤炭能源占比下降到61.19%,石油能源占比下降到5.02%。天然气能源比重提高到18.41%,非化石能源比重提高到15.02%。能源总成本增加到830.4亿美元,减排成本减少到27.4亿美元。随着规划约束条件的逐步完成,减排效果逐渐明显,但降幅逐渐减小。虽然减排成本可以随着能源成本的上升而降低,但该区域的宏观经济和环境却受到能源成本上升的影响。研究表明,要实现区域经济可持续发展,符合生态治理原则,必须加强能源管理,积极推进清洁能源发展,努力实现经济增长、能源发展和生态环境保护的平衡。同时,必须通过科学和技术革新确定替代能源,以减少对矿物能源的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1