{"title":"Study on flax and ramie fibers reinforced functionalized polypropylene hybrid composites: Processing, properties, and sustainability assessment","authors":"Mridul Pant, Sanjay Palsule","doi":"10.1007/s10965-024-04237-4","DOIUrl":null,"url":null,"abstract":"<div><p>Flax Fibers (FF) and Ramie Fibers (RF), with equal holo-cellulose contents (approx. 87%), have been used in equal proportions as reinforcements to develop their Chemically Functionalized Polypropylene (CF-PP) hybrid composites: [5/5]/90, [10/10]/80 and [15/15]/70 [FF/RF]/CF-PP hybrid composites. These hybrid composites, developed by extrusion followed by injection molding, exhibit good adhesion of FF and RF with CF-PP, as evident in their FE-SEM micrographs. FTIR establishes this adhesion originating from ester bonds and hydrogen bonds, formed between the reinforcements and the matrix by Palsule process. These [FF/RF]/CF-PP hybrid composites display higher tensile, flexural and impact properties than their matrix, and the property values increase proportionally with the total reinforcement content in the hybrid composites. Of all the hybrid composites, the [15/15]/70 [FF/RF]/CF-PP composite exhibits the highest mechanical properties, likely due to the highest total reinforcement content. Water absorption by the composites increases with the reinforcement content, and the [15/15]/70 composition shows the highest water uptake. Relative to the synthetic and inorganic fiber based composites, these [FF/RF]/CF-PP hybrid composites offer relatively better life cycle assessment parameters and higher sustainability with potential for reduced adverse impacts of environmental and energy during their manufacturing and applications.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04237-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Flax Fibers (FF) and Ramie Fibers (RF), with equal holo-cellulose contents (approx. 87%), have been used in equal proportions as reinforcements to develop their Chemically Functionalized Polypropylene (CF-PP) hybrid composites: [5/5]/90, [10/10]/80 and [15/15]/70 [FF/RF]/CF-PP hybrid composites. These hybrid composites, developed by extrusion followed by injection molding, exhibit good adhesion of FF and RF with CF-PP, as evident in their FE-SEM micrographs. FTIR establishes this adhesion originating from ester bonds and hydrogen bonds, formed between the reinforcements and the matrix by Palsule process. These [FF/RF]/CF-PP hybrid composites display higher tensile, flexural and impact properties than their matrix, and the property values increase proportionally with the total reinforcement content in the hybrid composites. Of all the hybrid composites, the [15/15]/70 [FF/RF]/CF-PP composite exhibits the highest mechanical properties, likely due to the highest total reinforcement content. Water absorption by the composites increases with the reinforcement content, and the [15/15]/70 composition shows the highest water uptake. Relative to the synthetic and inorganic fiber based composites, these [FF/RF]/CF-PP hybrid composites offer relatively better life cycle assessment parameters and higher sustainability with potential for reduced adverse impacts of environmental and energy during their manufacturing and applications.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.