Numerical Simulation of Summer Warming of Siberian Shelf Seas Depending on Short-Wave Radiation Parameterization

IF 0.9 Q4 OPTICS Atmospheric and Oceanic Optics Pub Date : 2024-12-19 DOI:10.1134/S1024856024700945
D. F. Iakshina, E. N. Golubeva, V. S. Gradov
{"title":"Numerical Simulation of Summer Warming of Siberian Shelf Seas Depending on Short-Wave Radiation Parameterization","authors":"D. F. Iakshina,&nbsp;E. N. Golubeva,&nbsp;V. S. Gradov","doi":"10.1134/S1024856024700945","DOIUrl":null,"url":null,"abstract":"<p>The main source of summer heating of the upper layer of Siberian Arctic shelf seas is shortwave solar radiation. The radiation flux attenuates as it passes through the water depth, and the attenuation rate is determined by the optical properties of water, which mainly depend on the concentration of suspended matter in the water. In numerical models of the ocean and sea ice, the process of shortwave solar radiation absorption is described by different parameterizations. In this work, the sensitivity of the numerical 3D regional ocean and sea ice model SibCIOM to two parameterizations of the penetrating radiation is studied: (1) two-component parameterization with constant attenuation coefficients for the infrared and visible spectral regions depending on one of ten ocean water transparency classes; (2) three-component parameterization with different absorption coefficients for the red, green, and blue parts of the visible spectrum, which is based on satellite data on chlorophyll concentration. The analysis of the results of numerical experiments for the water area of Siberian shelf seas has shown that if the seasonal distribution of chlorophyll concentration is taken into account when simulating a penetrating shortwave radiation flux with the RGB parameterization, then regions of water warming are formed in the surface or bottom layer, which differ from a basic experiment with the two-component parameterization. The comparison between the simulation results with observations shows the RGB parameterization to be preferable for the numerical simulation of Arctic shelf seas.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"706 - 714"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main source of summer heating of the upper layer of Siberian Arctic shelf seas is shortwave solar radiation. The radiation flux attenuates as it passes through the water depth, and the attenuation rate is determined by the optical properties of water, which mainly depend on the concentration of suspended matter in the water. In numerical models of the ocean and sea ice, the process of shortwave solar radiation absorption is described by different parameterizations. In this work, the sensitivity of the numerical 3D regional ocean and sea ice model SibCIOM to two parameterizations of the penetrating radiation is studied: (1) two-component parameterization with constant attenuation coefficients for the infrared and visible spectral regions depending on one of ten ocean water transparency classes; (2) three-component parameterization with different absorption coefficients for the red, green, and blue parts of the visible spectrum, which is based on satellite data on chlorophyll concentration. The analysis of the results of numerical experiments for the water area of Siberian shelf seas has shown that if the seasonal distribution of chlorophyll concentration is taken into account when simulating a penetrating shortwave radiation flux with the RGB parameterization, then regions of water warming are formed in the surface or bottom layer, which differ from a basic experiment with the two-component parameterization. The comparison between the simulation results with observations shows the RGB parameterization to be preferable for the numerical simulation of Arctic shelf seas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于短波辐射参数化的西伯利亚陆架海夏季增温数值模拟
西伯利亚北极陆架海上层夏季加热的主要来源是短波太阳辐射。辐射通量随水深的变化而衰减,衰减速率由水的光学性质决定,主要取决于水中悬浮物的浓度。在海洋和海冰的数值模式中,短波太阳辐射的吸收过程用不同的参数化来描述。本文研究了三维区域海洋和海冰数值模型SibCIOM对穿透辐射两种参数化的敏感性:(1)根据10种海水透明度等级中的一种,对红外和可见光光谱区域进行恒定衰减系数的双分量参数化;(2)基于卫星叶绿素浓度数据,对可见光谱的红、绿、蓝部分进行不同吸收系数的三分量参数化。对西伯利亚陆架海域的数值实验结果分析表明,在RGB参数化模拟穿透短波辐射通量时,如果考虑叶绿素浓度的季节分布,则会在表层或底层形成水温变暖区,这与双组分参数化的基本实验不同。模拟结果与观测结果的比较表明,RGB参数化方法更适合于北极陆架海的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
期刊最新文献
Determination of Atmospheric Turbulence Type from Operational Meteorological Measurements Vibrational Energy Levels for Sulfur Dioxide Isotopologues Activity of High Cyclones above Erebus Volcano According to ERA5 Reanalysis Data Two-Pulse Laser Fragmentation/Laser-Induced Fluorescence of Organophosphate Aerosol Study of the Wildfire Effect on Local Atmospheric Parameters using Remote Sensing Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1