In Situ Growth of Nanorod-Assembled SnWO4 via AACVD for ppb Level Xylene Gas Sensor

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-11-23 DOI:10.1007/s11664-024-11609-5
Mincong Zhou, Xu Li, Qingji Wang
{"title":"In Situ Growth of Nanorod-Assembled SnWO4 via AACVD for ppb Level Xylene Gas Sensor","authors":"Mincong Zhou,&nbsp;Xu Li,&nbsp;Qingji Wang","doi":"10.1007/s11664-024-11609-5","DOIUrl":null,"url":null,"abstract":"<div><p>Unique nanostructures contribute to optimizing gas-sensitive properties, which has been widely acknowledged in the field of gas sensing. However, the construction of nanostructures by the in situ method is still challenging. In this work, nanorod-assembled SnWO<sub>4</sub> was fabricated directly on interdigital electrodes by a one-step aerosol-assisted chemical vapor deposition method. The xylene gas sensor was developed, featuring low detection limits and fast response. Under the operating temperature of 350°C, the detection limit of the SnWO<sub>4</sub> sensor for xylene reaches a minimal level of 10 ppb. Meanwhile, the sensor exhibits excellent performance in response time, providing a rapid response of 2 s to 100 ppm xylene. Apart from this, the sensor also exhibits good selectivity. Among various volatile organic compound gases of the same 100 ppm at 350°C, the sensor’s response to xylene (484%) is 3.6 times that of toluene and 5.3 times that of benzene. The excellent gas-sensing performance is primarily due to the unique structural properties of nanorod-assembled SnWO<sub>4</sub>. This paper holds significant research potential in the field of gas sensing, particularly for the development of high-performance xylene sensors.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"348 - 360"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11609-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Unique nanostructures contribute to optimizing gas-sensitive properties, which has been widely acknowledged in the field of gas sensing. However, the construction of nanostructures by the in situ method is still challenging. In this work, nanorod-assembled SnWO4 was fabricated directly on interdigital electrodes by a one-step aerosol-assisted chemical vapor deposition method. The xylene gas sensor was developed, featuring low detection limits and fast response. Under the operating temperature of 350°C, the detection limit of the SnWO4 sensor for xylene reaches a minimal level of 10 ppb. Meanwhile, the sensor exhibits excellent performance in response time, providing a rapid response of 2 s to 100 ppm xylene. Apart from this, the sensor also exhibits good selectivity. Among various volatile organic compound gases of the same 100 ppm at 350°C, the sensor’s response to xylene (484%) is 3.6 times that of toluene and 5.3 times that of benzene. The excellent gas-sensing performance is primarily due to the unique structural properties of nanorod-assembled SnWO4. This paper holds significant research potential in the field of gas sensing, particularly for the development of high-performance xylene sensors.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AACVD法原位生长ppb级二甲苯气体传感器用纳米棒组装的snowo4
独特的纳米结构有助于优化气敏性能,这在气敏领域得到了广泛的认可。然而,用原位方法构建纳米结构仍然具有挑战性。在这项工作中,采用一步气溶胶辅助化学气相沉积方法直接在数字电极上制备了纳米棒组装的SnWO4。研制了检测限低、响应速度快的二甲苯气体传感器。在350°C的工作温度下,SnWO4传感器对二甲苯的检测极限达到最低水平10 ppb。同时,传感器在响应时间上表现出优异的性能,提供2秒到100 ppm二甲苯的快速响应。此外,该传感器还具有良好的选择性。在350°C下,在相同100 ppm的各种挥发性有机化合物气体中,传感器对二甲苯(484%)的响应是甲苯的3.6倍,是苯的5.3倍。优异的气敏性能主要是由于纳米棒组装的SnWO4的独特结构特性。本文在气体传感领域,特别是高性能二甲苯传感器的开发方面具有重要的研究潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Butyltin trichloride
阿拉丁
Tungsten hexacarbonyl
阿拉丁
Methanol (CH3OH)
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
In Situ Growth of Nanorod-Assembled SnWO4 via AACVD for ppb Level Xylene Gas Sensor Polymeric Biosensor Development for Electrochemical Analysis of Tartrazine and Methyl Orange Study on the Vibration Mechanism of the Core Components of an HVDC Filter Capacitor Enhanced Thermal Sensitivity of Graphite Paint-Based Flexible Thermocouple Designing Novel Photosensitizers Based on Pyridoquinazolinone and Its TiO2-Adsorbed Complexes with Efficient Photovoltaic Performance in DSSCs: A DFT Insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1