This target is to decide power input and gas hold-up for gas–liquid mixing aqueous CMC solutions. The analysis considers the impact by varying the impeller speed and gas flow rates in a stirred tank bioreactor of three kinds of multiple impellers. The effects of the impeller type, rheology, and operating conditions were investigated on power drawn, relative power demand (RPD), gas holdup, and volumetric mass transfer coefficient.
RESULT
Compared to the Rushton turbine (6RT) and 4-pitch blade (4PBT) impeller, the propeller (3PP) impeller presented a minimal event of the gassing on the RPD. 4PBT impeller has shown a higher gas hold-up compared to the Rushton turbine and propeller impellers. The aerated agitated tank was established a dimensionless correlation for the RPD as a function of flow number and web number. Besides, the gas–liquid agitated system was also introduced a dimensionless correlation to compute the overall gas hold-up as a function of specific power consumption. For the maximum dispersion mixing intensity, the impeller structure with low RPD looks to be more adequate. Further, maximizing gas holdup in the structures with high RPD is advantageous. The effects of impeller speed, gas superficial velocity, and rheology on the volumetric mass transfer coefficient were examined.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.