Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications

IF 2.5 Q2 ENGINEERING, INDUSTRIAL IET Collaborative Intelligent Manufacturing Pub Date : 2024-12-04 DOI:10.1049/cim2.70015
Pasupuleti Thejasree, Natarajan Manikandan, Neeraj Sunheriya, Jayant Giri, Rajkumar Chadge, T. Sathish, Ajay Kumar, Muhammad Imam Ammarullah
{"title":"Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications","authors":"Pasupuleti Thejasree,&nbsp;Natarajan Manikandan,&nbsp;Neeraj Sunheriya,&nbsp;Jayant Giri,&nbsp;Rajkumar Chadge,&nbsp;T. Sathish,&nbsp;Ajay Kumar,&nbsp;Muhammad Imam Ammarullah","doi":"10.1049/cim2.70015","DOIUrl":null,"url":null,"abstract":"<p>Superalloys, particularly nickel alloys such as Inconel 625, are increasingly used in biomedical engineering for manufacturing critical components such as implants and surgical instruments due to their exceptional mechanical properties and corrosion resistance. However, traditional machining methods often struggle with these materials due to their high strength and thermal conductivity. This study investigates the application of Wire Electrical Discharge Machining (WEDM) as an advanced method for processing Inconel 625 in biomedical contexts. The authors develop an Adaptive Neuro-Fuzzy Inference System for forecasting WEDM parameters using grey-based data. The model's variable inputs are analysed through analysis of variance (ANOVA) and Taguchi design, aiming to optimise process performance attributes relevant to biomedical applications. Comparative studies between predicted and experimental data demonstrate a high degree of accuracy, indicating that the proposed model effectively enhances the machining process. The results suggest that this intelligent system supports decision-making in the production of high-quality biomedical devices and components.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Superalloys, particularly nickel alloys such as Inconel 625, are increasingly used in biomedical engineering for manufacturing critical components such as implants and surgical instruments due to their exceptional mechanical properties and corrosion resistance. However, traditional machining methods often struggle with these materials due to their high strength and thermal conductivity. This study investigates the application of Wire Electrical Discharge Machining (WEDM) as an advanced method for processing Inconel 625 in biomedical contexts. The authors develop an Adaptive Neuro-Fuzzy Inference System for forecasting WEDM parameters using grey-based data. The model's variable inputs are analysed through analysis of variance (ANOVA) and Taguchi design, aiming to optimise process performance attributes relevant to biomedical applications. Comparative studies between predicted and experimental data demonstrate a high degree of accuracy, indicating that the proposed model effectively enhances the machining process. The results suggest that this intelligent system supports decision-making in the production of high-quality biomedical devices and components.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
期刊最新文献
Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications Integrated modelling and simulation method of hybrid systems based on X language RETRACTION: A novel method of material demand forecasting for power supply chains in industrial applications A multimodal expert system for the intelligent monitoring and maintenance of transformers enhanced by multimodal language large model fine-tuning and digital twins RETRACTION: Analysis of a building collaborative platform for Industry 4.0 based on Building Information Modelling technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1