首页 > 最新文献

IET Collaborative Intelligent Manufacturing最新文献

英文 中文
Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-12-04 DOI: 10.1049/cim2.70015
Pasupuleti Thejasree, Natarajan Manikandan, Neeraj Sunheriya, Jayant Giri, Rajkumar Chadge, T. Sathish, Ajay Kumar, Muhammad Imam Ammarullah

Superalloys, particularly nickel alloys such as Inconel 625, are increasingly used in biomedical engineering for manufacturing critical components such as implants and surgical instruments due to their exceptional mechanical properties and corrosion resistance. However, traditional machining methods often struggle with these materials due to their high strength and thermal conductivity. This study investigates the application of Wire Electrical Discharge Machining (WEDM) as an advanced method for processing Inconel 625 in biomedical contexts. The authors develop an Adaptive Neuro-Fuzzy Inference System for forecasting WEDM parameters using grey-based data. The model's variable inputs are analysed through analysis of variance (ANOVA) and Taguchi design, aiming to optimise process performance attributes relevant to biomedical applications. Comparative studies between predicted and experimental data demonstrate a high degree of accuracy, indicating that the proposed model effectively enhances the machining process. The results suggest that this intelligent system supports decision-making in the production of high-quality biomedical devices and components.

{"title":"Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications","authors":"Pasupuleti Thejasree,&nbsp;Natarajan Manikandan,&nbsp;Neeraj Sunheriya,&nbsp;Jayant Giri,&nbsp;Rajkumar Chadge,&nbsp;T. Sathish,&nbsp;Ajay Kumar,&nbsp;Muhammad Imam Ammarullah","doi":"10.1049/cim2.70015","DOIUrl":"https://doi.org/10.1049/cim2.70015","url":null,"abstract":"<p>Superalloys, particularly nickel alloys such as Inconel 625, are increasingly used in biomedical engineering for manufacturing critical components such as implants and surgical instruments due to their exceptional mechanical properties and corrosion resistance. However, traditional machining methods often struggle with these materials due to their high strength and thermal conductivity. This study investigates the application of Wire Electrical Discharge Machining (WEDM) as an advanced method for processing Inconel 625 in biomedical contexts. The authors develop an Adaptive Neuro-Fuzzy Inference System for forecasting WEDM parameters using grey-based data. The model's variable inputs are analysed through analysis of variance (ANOVA) and Taguchi design, aiming to optimise process performance attributes relevant to biomedical applications. Comparative studies between predicted and experimental data demonstrate a high degree of accuracy, indicating that the proposed model effectively enhances the machining process. The results suggest that this intelligent system supports decision-making in the production of high-quality biomedical devices and components.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated modelling and simulation method of hybrid systems based on X language
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-12-02 DOI: 10.1049/cim2.70006
Kunyu Xie, Lin Zhang, Xiaohan Wang, Kunyu Wang, Yingjie Li

Model-based systems engineering is now leading the way in supporting the design of complex products or systems. The integration of modelling and simulation of continuous-discrete hybrid systems is the key of model-based systems engineering. But the existing languages, formalisms and tools cannot support the unified modelling and simulation of hybrid systems and therefore reduces the efficiency of complex system development. To address this issue, this paper develops a design method of complex hybrid systems, which integrates modelling and simulation of the continuous-discrete hybrid behaviour. Specifically, the authors provided a modelling method of hybrid systems based on the X language, a simulation method based on XDEVS, and a compilation algorithm to transform the hybrid model constructed with X language into XDEVS simulation files. In this way, the X language hybrid model can be automatically translated into XDEVS simulation files by a compiler. The simulation files can then be simulated by the XDEVS simulation engine. The obtained simulation results will be used to verify whether the design scheme meets the design requirements of the hybrid system. Finally, the correctness and feasibility of the proposed method are verified using a car-driving model.

{"title":"Integrated modelling and simulation method of hybrid systems based on X language","authors":"Kunyu Xie,&nbsp;Lin Zhang,&nbsp;Xiaohan Wang,&nbsp;Kunyu Wang,&nbsp;Yingjie Li","doi":"10.1049/cim2.70006","DOIUrl":"https://doi.org/10.1049/cim2.70006","url":null,"abstract":"<p>Model-based systems engineering is now leading the way in supporting the design of complex products or systems. The integration of modelling and simulation of continuous-discrete hybrid systems is the key of model-based systems engineering. But the existing languages, formalisms and tools cannot support the unified modelling and simulation of hybrid systems and therefore reduces the efficiency of complex system development. To address this issue, this paper develops a design method of complex hybrid systems, which integrates modelling and simulation of the continuous-discrete hybrid behaviour. Specifically, the authors provided a modelling method of hybrid systems based on the X language, a simulation method based on XDEVS, and a compilation algorithm to transform the hybrid model constructed with X language into XDEVS simulation files. In this way, the X language hybrid model can be automatically translated into XDEVS simulation files by a compiler. The simulation files can then be simulated by the XDEVS simulation engine. The obtained simulation results will be used to verify whether the design scheme meets the design requirements of the hybrid system. Finally, the correctness and feasibility of the proposed method are verified using a car-driving model.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: A flight control method for unmanned aerial vehicles based on vibration suppression
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-11-28 DOI: 10.1049/cim2.70014

RETRACTION: X. Wang, X. Zhang, H. Gong, J. Jiang, H. M. Rai: A flight control method for unmanned aerial vehicles based on vibration suppression. IET Collaborative Intelligent Manufacturing 3, no. 3, 252–261 (2021). https://doi.org/10.1049/cim2.12027.

The above article, published online on 26 March 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley & Sons Ltd.

This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley & Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the corresponding special issue underwent systematic manipulation. In addition, the manuscript contains flaws and inconsistencies. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision to retract.

{"title":"RETRACTION: A flight control method for unmanned aerial vehicles based on vibration suppression","authors":"","doi":"10.1049/cim2.70014","DOIUrl":"https://doi.org/10.1049/cim2.70014","url":null,"abstract":"<p><b>RETRACTION</b>: X. Wang, X. Zhang, H. Gong, J. Jiang, H. M. Rai: A flight control method for unmanned aerial vehicles based on vibration suppression. <i>IET Collaborative Intelligent Manufacturing</i> 3, no. 3, 252–261 (2021). https://doi.org/10.1049/cim2.12027.</p><p>The above article, published online on 26 March 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley &amp; Sons Ltd.</p><p>This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley &amp; Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the corresponding special issue underwent systematic manipulation. In addition, the manuscript contains flaws and inconsistencies. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision to retract.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: Research on dispersion compensation using avalanche photodiode and pin photodiode
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-11-28 DOI: 10.1049/cim2.70010

RETRACTION: Y. Ma, Q. Chen, S. Wang, S. Sharma, S. Khanna: Research on dispersion compensation using avalanche photodiode and pin photodiode. IET Collaborative Intelligent Manufacturing 3, no. 3, 205–214 (2021). https://doi.org/10.1049/cim2.12000.

The above article, published online on 17 December 2020 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley & Sons Ltd.

This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley & Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. Furthermore, mistakes and inconsistencies were found in different figures of this manuscript. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision to retract.

{"title":"RETRACTION: Research on dispersion compensation using avalanche photodiode and pin photodiode","authors":"","doi":"10.1049/cim2.70010","DOIUrl":"https://doi.org/10.1049/cim2.70010","url":null,"abstract":"<p><b>RETRACTION</b>: Y. Ma, Q. Chen, S. Wang, S. Sharma, S. Khanna: Research on dispersion compensation using avalanche photodiode and pin photodiode. <i>IET Collaborative Intelligent Manufacturing</i> 3, no. 3, 205–214 (2021). https://doi.org/10.1049/cim2.12000.</p><p>The above article, published online on 17 December 2020 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley &amp; Sons Ltd.</p><p>This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley &amp; Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. Furthermore, mistakes and inconsistencies were found in different figures of this manuscript. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision to retract.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: A novel method of material demand forecasting for power supply chains in industrial applications
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-11-28 DOI: 10.1049/cim2.70012

RETRACTION: Y. Xiao, Z. Jun, H. Lei, A. Sharma, A. Sharma: A novel method of material demand forecasting for power supply chains in industrial applications. IET Collaborative Intelligent Manufacturing 3, no. 3, 273–280 (2021). https://doi.org/10.1049/cim2.12007.

The above article, published online on 21 February 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley & Sons Ltd.

This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley & Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. In addition, most graphs are missing relevant units and descriptors so that the results are not comprehensible. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed and they disagree with the retraction.

{"title":"RETRACTION: A novel method of material demand forecasting for power supply chains in industrial applications","authors":"","doi":"10.1049/cim2.70012","DOIUrl":"https://doi.org/10.1049/cim2.70012","url":null,"abstract":"<p><b>RETRACTION</b>: Y. Xiao, Z. Jun, H. Lei, A. Sharma, A. Sharma: A novel method of material demand forecasting for power supply chains in industrial applications. <i>IET Collaborative Intelligent Manufacturing</i> 3, no. 3, 273–280 (2021). https://doi.org/10.1049/cim2.12007.</p><p>The above article, published online on 21 February 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley &amp; Sons Ltd.</p><p>This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley &amp; Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. In addition, most graphs are missing relevant units and descriptors so that the results are not comprehensible. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed and they disagree with the retraction.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: Analysis of a building collaborative platform for Industry 4.0 based on Building Information Modelling technology
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-11-28 DOI: 10.1049/cim2.70011

RETRACTION: C. Ding, R. Kohli: Analysis of a building collaborative platform for Industry 4.0 based on Building Information Modelling technology. IET Collaborative Intelligent Manufacturing 3, no. 3, 233–242 (2021). https://doi.org/10.1049/cim2.12036.

The above article, published online on 21 August 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley & Sons Ltd.

This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley & Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. Furthermore, the manuscript contains multiple inconsistencies and several scientific statements are not supported by relevant references. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision to retract.

{"title":"RETRACTION: Analysis of a building collaborative platform for Industry 4.0 based on Building Information Modelling technology","authors":"","doi":"10.1049/cim2.70011","DOIUrl":"https://doi.org/10.1049/cim2.70011","url":null,"abstract":"<p><b>RETRACTION</b>: C. Ding, R. Kohli: Analysis of a building collaborative platform for Industry 4.0 based on Building Information Modelling technology. <i>IET Collaborative Intelligent Manufacturing</i> 3, no. 3, 233–242 (2021). https://doi.org/10.1049/cim2.12036.</p><p>The above article, published online on 21 August 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley &amp; Sons Ltd.</p><p>This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley &amp; Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. Furthermore, the manuscript contains multiple inconsistencies and several scientific statements are not supported by relevant references. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision to retract.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: A viability study using conceptual models for last mile drone logistics operations in populated urban cities of India
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-11-28 DOI: 10.1049/cim2.70013

RETRACTION: P. R. Gabani, U. B. Gala, V. S. Narwane, R. D. Raut, U. H. Govindarajan, B. E. Narkhede: A viability study using conceptual models for last mile drone logistics operations in populated urban cities of India. IET Collaborative Intelligent Manufacturing 3, no. 3, 262–272 (2021). https://doi.org/10.1049/cim2.12006.

The above article, published online on 16 February 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley & Sons Ltd.

This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley & Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. Furthermore, the conclusions of this manuscript are unsupported by any relevant experiments or calculations. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision and disagree with the retraction.

{"title":"RETRACTION: A viability study using conceptual models for last mile drone logistics operations in populated urban cities of India","authors":"","doi":"10.1049/cim2.70013","DOIUrl":"https://doi.org/10.1049/cim2.70013","url":null,"abstract":"<p><b>RETRACTION</b>: P. R. Gabani, U. B. Gala, V. S. Narwane, R. D. Raut, U. H. Govindarajan, B. E. Narkhede: A viability study using conceptual models for last mile drone logistics operations in populated urban cities of India. <i>IET Collaborative Intelligent Manufacturing</i> 3, no. 3, 262–272 (2021). https://doi.org/10.1049/cim2.12006.</p><p>The above article, published online on 16 February 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley &amp; Sons Ltd.</p><p>This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley &amp; Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. Furthermore, the conclusions of this manuscript are unsupported by any relevant experiments or calculations. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision and disagree with the retraction.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: Prediction of energy consumption of numerical control machine tools and analysis of key energy-saving technologies
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-11-28 DOI: 10.1049/cim2.70009

RETRACTION: H. Qiang, M.A. Ikbal, S. Khanna: Prediction of energy consumption of numerical control machine tools and analysis of key energy-saving technologies. IET Collaborative Intelligent Manufacturing 3, no. 3, 215–223 (2021). https://doi.org/10.1049/cim2.12001.

The above article, published online on 1 February 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley & Sons Ltd.

This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley & Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the corresponding special issue underwent systematic manipulation. Furthermore, the manuscript contains various logical flaws as well as unrelated references that do not support the scientific statements made. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision to retract.

{"title":"RETRACTION: Prediction of energy consumption of numerical control machine tools and analysis of key energy-saving technologies","authors":"","doi":"10.1049/cim2.70009","DOIUrl":"https://doi.org/10.1049/cim2.70009","url":null,"abstract":"<p><b>RETRACTION</b>: H. Qiang, M.A. Ikbal, S. Khanna: Prediction of energy consumption of numerical control machine tools and analysis of key energy-saving technologies. <i>IET Collaborative Intelligent Manufacturing</i> 3, no. 3, 215–223 (2021). https://doi.org/10.1049/cim2.12001.</p><p>The above article, published online on 1 February 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley &amp; Sons Ltd.</p><p>This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley &amp; Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the corresponding special issue underwent systematic manipulation. Furthermore, the manuscript contains various logical flaws as well as unrelated references that do not support the scientific statements made. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed of the decision to retract.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multimodal expert system for the intelligent monitoring and maintenance of transformers enhanced by multimodal language large model fine-tuning and digital twins
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-11-28 DOI: 10.1049/cim2.70007
Xuedong Zhang, Wenlei Sun, Ke Chen, Renben Jiang

The development of multimodal large models and digital twin technology is set to revolutionise the methods of intelligent monitoring and maintenance for transformers. To address the issues of low intelligence level, single application mode, and poor human–machine collaboration in traditional transformer monitoring and maintenance methods, an intelligent monitoring and maintenance digital twin multimodal expert reasoning system, fine-tuned on visual language-based large models, is proposed. The paper explores the modes and methods for implementing intelligent monitoring and maintenance of transformers based on multimodal data, large models, and digital twin technology. A multimodal language large model (MLLM) framework for intelligent transformer maintenance, grounded on the Large Language and Vision Assistant model, has been designed. To enable large models to understand and reason about image annotation areas, an adaptive grid-based positional information processor has been designed. To facilitate the compatibility and learning of large models with transformer Dissolved Gas Analysis data, a heterogeneous modality converter based on the Gram–Schmidt angular field has been developed. For the unified modelling and management of multimodal reasoning and comprehensive resource integration in human–machine dialogue, a central linker based on an identity resolution asset management shell has been designed. Subsequently, a visual-language multimodal dataset for transformer monitoring and maintenance was constructed. Finally, by fine-tuning parameters, a multimodal expert reasoning system for intelligent transformer monitoring and maintenance was developed. This system not only achieves real-time monitoring of the transformer's operational status but also generates maintenance strategies intelligently based on operational conditions. The expert system possesses robust human–machine dialogue capabilities and reasoning generation abilities. This research provides a reference for the deep integration of MLLM and digital twin in industrial scenarios, particularly in the application modes of intelligent operation and maintenance for transformers.

{"title":"A multimodal expert system for the intelligent monitoring and maintenance of transformers enhanced by multimodal language large model fine-tuning and digital twins","authors":"Xuedong Zhang,&nbsp;Wenlei Sun,&nbsp;Ke Chen,&nbsp;Renben Jiang","doi":"10.1049/cim2.70007","DOIUrl":"https://doi.org/10.1049/cim2.70007","url":null,"abstract":"<p>The development of multimodal large models and digital twin technology is set to revolutionise the methods of intelligent monitoring and maintenance for transformers. To address the issues of low intelligence level, single application mode, and poor human–machine collaboration in traditional transformer monitoring and maintenance methods, an intelligent monitoring and maintenance digital twin multimodal expert reasoning system, fine-tuned on visual language-based large models, is proposed. The paper explores the modes and methods for implementing intelligent monitoring and maintenance of transformers based on multimodal data, large models, and digital twin technology. A multimodal language large model (MLLM) framework for intelligent transformer maintenance, grounded on the Large Language and Vision Assistant model, has been designed. To enable large models to understand and reason about image annotation areas, an adaptive grid-based positional information processor has been designed. To facilitate the compatibility and learning of large models with transformer Dissolved Gas Analysis data, a heterogeneous modality converter based on the Gram–Schmidt angular field has been developed. For the unified modelling and management of multimodal reasoning and comprehensive resource integration in human–machine dialogue, a central linker based on an identity resolution asset management shell has been designed. Subsequently, a visual-language multimodal dataset for transformer monitoring and maintenance was constructed. Finally, by fine-tuning parameters, a multimodal expert reasoning system for intelligent transformer monitoring and maintenance was developed. This system not only achieves real-time monitoring of the transformer's operational status but also generates maintenance strategies intelligently based on operational conditions. The expert system possesses robust human–machine dialogue capabilities and reasoning generation abilities. This research provides a reference for the deep integration of MLLM and digital twin in industrial scenarios, particularly in the application modes of intelligent operation and maintenance for transformers.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION: Design and implementation of construction prediction and management platform based on building information modelling and three-dimensional simulation technology in Industry 4.0
IF 2.5 Q2 ENGINEERING, INDUSTRIAL Pub Date : 2024-11-28 DOI: 10.1049/cim2.70008

RETRACTION: H. Sun, M. Fan, A. Sharma: Design and implementation of construction prediction and management platform based on building information modelling and three-dimensional simulation technology in Industry 4.0. IET Collaborative Intelligent Manufacturing 3, no. 3, 224–232 (2021). https://doi.org/10.1049/cim2.12019.

The above article, published online on 21st March 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley and Sons Ltd.

This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley and Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. In addition, multiple inconsistencies and textual disconnections were found. As such, the research described is not comprehensible for readers. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed and they disagree with the retraction.

{"title":"RETRACTION: Design and implementation of construction prediction and management platform based on building information modelling and three-dimensional simulation technology in Industry 4.0","authors":"","doi":"10.1049/cim2.70008","DOIUrl":"https://doi.org/10.1049/cim2.70008","url":null,"abstract":"<p><b>RETRACTION</b>: H. Sun, M. Fan, A. Sharma: Design and implementation of construction prediction and management platform based on building information modelling and three-dimensional simulation technology in Industry 4.0. <i>IET Collaborative Intelligent Manufacturing</i> 3, no. 3, 224–232 (2021). https://doi.org/10.1049/cim2.12019.</p><p>The above article, published online on 21st March 2021 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal's Editors-in-Chief; Liang Gao and Weiming Shen; the Institution of Engineering and Technology; and John Wiley and Sons Ltd.</p><p>This article was published as part of a guest-edited special issue. Following an investigation, the IET, John Wiley and Sons Ltd and the journal have determined that the article was not reviewed in line with the journal's peer review standards and there is evidence that the peer review process of the special issue underwent systematic manipulation. In addition, multiple inconsistencies and textual disconnections were found. As such, the research described is not comprehensible for readers. Accordingly, we cannot vouch for the integrity or reliability of the content and have taken the decision to retract the article. The authors have been informed and they disagree with the retraction.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET Collaborative Intelligent Manufacturing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1