Long-Term Foehn Reconstruction Combining Unsupervised and Supervised Learning

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES International Journal of Climatology Pub Date : 2024-11-06 DOI:10.1002/joc.8673
Reto Stauffer, Achim Zeileis, Georg J. Mayr
{"title":"Long-Term Foehn Reconstruction Combining Unsupervised and Supervised Learning","authors":"Reto Stauffer,&nbsp;Achim Zeileis,&nbsp;Georg J. Mayr","doi":"10.1002/joc.8673","DOIUrl":null,"url":null,"abstract":"<p>Foehn winds, characterised by abrupt temperature increases and wind speed changes, significantly impact regions on the leeward side of mountain ranges, e.g., by spreading wildfires. Understanding how foehn occurrences change under climate change is crucial. As foehn is a meteorological phenomenon, its prevalence has to be inferred from meteorological measurements employing suitable classification schemes. Hence, this approach is typically limited to specific periods for which the necessary data are available. We present a novel approach for reconstructing historical foehn occurrences using a combination of unsupervised and supervised probabilistic statistical learning methods. We utilise in situ measurements (available for recent decades) to train an unsupervised learner (finite mixture model) for automatic foehn classification. These labelled data are then linked to reanalysis data (covering longer periods) using a supervised learner (lasso or boosting). This allows us to reconstruct past foehn probabilities based solely on reanalysis data. Applying this method to ERA5 reanalysis data for six stations across Switzerland and Austria achieves accurate hourly reconstructions of north and south foehn occurrence, respectively, dating back to 1940. This paves the way for investigating how seasonal foehn patterns have evolved over the past 83 years, providing valuable insights into climate change impacts on these critical wind events.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 16","pages":"5890-5901"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8673","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8673","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Foehn winds, characterised by abrupt temperature increases and wind speed changes, significantly impact regions on the leeward side of mountain ranges, e.g., by spreading wildfires. Understanding how foehn occurrences change under climate change is crucial. As foehn is a meteorological phenomenon, its prevalence has to be inferred from meteorological measurements employing suitable classification schemes. Hence, this approach is typically limited to specific periods for which the necessary data are available. We present a novel approach for reconstructing historical foehn occurrences using a combination of unsupervised and supervised probabilistic statistical learning methods. We utilise in situ measurements (available for recent decades) to train an unsupervised learner (finite mixture model) for automatic foehn classification. These labelled data are then linked to reanalysis data (covering longer periods) using a supervised learner (lasso or boosting). This allows us to reconstruct past foehn probabilities based solely on reanalysis data. Applying this method to ERA5 reanalysis data for six stations across Switzerland and Austria achieves accurate hourly reconstructions of north and south foehn occurrence, respectively, dating back to 1940. This paves the way for investigating how seasonal foehn patterns have evolved over the past 83 years, providing valuable insights into climate change impacts on these critical wind events.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
期刊最新文献
Issue Information Issue Information Time Series Clustering of Sea Surface Temperature in the Mediterranean and Black Sea Marine System An Elevated Influence of the Low-Latitude Drivers on the East Asian Winter Monsoon After Around 1990 Improvement in the Low Temperature Prediction Skill During Cold Winters Over the Mid–High Latitudes of Eurasia in CFSv2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1