{"title":"Combination of dynamic TOPMODEL and machine learning techniques to improve runoff prediction","authors":"Pin-Chun Huang","doi":"10.1111/jfr3.13050","DOIUrl":null,"url":null,"abstract":"<p>TOPMODEL has been widely employed in hydrology research, undergoing continuous modifications to broaden its practical applicability and enhance its simulation accuracy. To encompass spatial discretization, diffusion-wave characteristics, depth-dependent flow velocity, and flux estimation in the unsaturated zone, a generalized dynamic TOPMODEL is developed by introducing a greater number of physical parameters. The present study aims to evaluate the optimal combination of these parameters within the dynamic TOPMODEL framework using machine learning techniques to improve the accuracy of runoff predictions and bolster the model's reliability. An innovative training method is suggested to elevate the model's performance by integrating the Long Short-Term Memory (LSTM) algorithm and a topological classification, which relies on the evolving spatial distribution of runoff conditions during floods. The research findings show that the proposed methodology achieves the lowest mean relative error (MRE) at 0.106, the highest Pearson correlation coefficient (PC) at 0.938, and the highest coefficient of determination (<i>R</i><sup><i>2</i></sup>) at 0.906 among the three dynamic TOPMODEL types adopted in this study. The effective implementation of a case study in a river basin showcases the feasibility of the proposed method in conjunction with dynamic TOPMODEL and underscores the importance of employing the suggested training procedure.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13050","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
TOPMODEL has been widely employed in hydrology research, undergoing continuous modifications to broaden its practical applicability and enhance its simulation accuracy. To encompass spatial discretization, diffusion-wave characteristics, depth-dependent flow velocity, and flux estimation in the unsaturated zone, a generalized dynamic TOPMODEL is developed by introducing a greater number of physical parameters. The present study aims to evaluate the optimal combination of these parameters within the dynamic TOPMODEL framework using machine learning techniques to improve the accuracy of runoff predictions and bolster the model's reliability. An innovative training method is suggested to elevate the model's performance by integrating the Long Short-Term Memory (LSTM) algorithm and a topological classification, which relies on the evolving spatial distribution of runoff conditions during floods. The research findings show that the proposed methodology achieves the lowest mean relative error (MRE) at 0.106, the highest Pearson correlation coefficient (PC) at 0.938, and the highest coefficient of determination (R2) at 0.906 among the three dynamic TOPMODEL types adopted in this study. The effective implementation of a case study in a river basin showcases the feasibility of the proposed method in conjunction with dynamic TOPMODEL and underscores the importance of employing the suggested training procedure.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.